Lithium chloride clinically used to treat mental diseases but it has some side effects like cognitive impairment, memory deficit. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that is able to change neural activity and gene transcription in the brain. The aim of the study is to provide a conceptual theoretical framework based on behavioral and molecular effects of tDCS on memory changes induced by lithium in male mice. we applied Anodal-tDCS and Cathodal-tDCS over the left PFC for 3 consecutive days tDCS for 20 min with 2 mA after injection of different doses of lithium/saline.Trained in fear condition and finally the day after that tested their memory persistency factors (freezing-latency) and other behavior such as grooming and rearing percentage time in the fear conditioning. P-mTOR/mTOR was analyzed using western blotting. The results obtained from the preliminary analysis of behavioral fear memory showed that lithium had destructive effect in higher doses and decreased freezing percentage time. However, both cathodal and anodal tDCS significantly improved memory and increased P-mTOR/mTOR level in the PFC. The results of this study indicate that cathodal and anodal tDCS upon the left prefrontal increased memory and reduced lithium side effects on memory consolidation and altered expression of plasticity-associated genes in the prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-020-00643-x | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
In order to comply with the expected tightening of discharge limits for lithium to surface waters, the lithium-ion battery industry will need access to methods to reduce the concentration of lithium in wastewater down to ppm levels. In this Communication, we discuss the possibility of using sodium and choline soaps as precipitating agents for lithium, comparing the two soap classes and probing the influence of the carbon chain length. It was found that lithium concentrations down to 10 ppm can be reached with sodium stearate, and down to 1 ppm with choline stearate, using a slight excess of the precipitating agent.
View Article and Find Full Text PDFJ Vis Exp
December 2024
School of Engineering and Materials Science, Queen Mary University of London.
Nat Commun
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China.
The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!