Exploring soil erosion trajectories and their divergent responses to driving factors: a model-based contrasting study in highly eroded mountain areas.

Environ Sci Pollut Res Int

Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.

Published: March 2021

Soil erosion threatens environmental sustainability worldwide. Exploring the trajectories of soil erosion and associated drivers is of great significance for combating land degradation. This study selected the highly eroded Loess Plateau (LP) and Karst Plateau (KP) as contrasting regions to monitor soil erosion dynamics. Monitoring was performed by applying the Revised Universal Soil Loss Equation based on a GIS platform and multi-source input data to investigate associated drivers. The results established that soil erosion in both regions was substantially reduced by ecological restoration projects and significant land use/cover conversions. Landscape and geomorphological variables were found to be the dominant factors controlling soil erosion in the LP and KP, as they influenced land use patches and geomorphological patterns, respectively. The correlations between fragmentation metric indices and soil erosion indicated that the appropriately intensive fragmentation in the LP could mitigate or prevent soil erosion by disturbing its formation and transportation and ultimately positively influenced soil erosion control. Geomorphological patterns were also determinative factors, particularly for the KP, where almost all geomorphological variables were significantly correlated with the erosion modulus. Owing to the peculiar landform and landscape conditions in karst areas and loess hilly-gully areas, geomorphological and landscape variables should be considered when determining the main factors affecting soil erosion processes and integrated into the forecasting model to improve the accuracy of the simulation. The findings of this study are expected to (i) improve the efficacy of soil erosion control and (ii) promote the sustainable planning and management of land and soil resources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11703-1DOI Listing

Publication Analysis

Top Keywords

soil erosion
44
erosion
12
soil
12
highly eroded
8
associated drivers
8
geomorphological variables
8
geomorphological patterns
8
erosion control
8
geomorphological
5
exploring soil
4

Similar Publications

Shifts in fungal communities drive soil profile nutrient cycling during grassland restoration.

mBio

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.

Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.

View Article and Find Full Text PDF

The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.

View Article and Find Full Text PDF

The Inca and their immediate predecessors provide an exceptional model of how to create high-altitude functional environments that sustainably feed people with a diversity of crops, whilst mitigating erosion, protecting forestry and maintaining soil fertility without the need for large-scale burning. A comparison is provided here of landscape practices and impacts prior to and after the Inca, derived from a unique 4200-year sedimentary record recovered from Laguna Marcacocha, a small, environmentally sensitive lake located at the heart of the Inca Empire. By examining ten selected proxies of environmental change, a rare window is opened on the past, helping to reveal how resilient watershed management and sustainable, climate-smart agriculture were achieved.

View Article and Find Full Text PDF

Microbially Induced Calcium Carbonate Precipitation (MICP) plays a significant role in coastal soil stabilization and erosion prevention. In the present study, the biomineralizing potential of a newly isolated Bacillus sp. N₉ was investigated through MICP.

View Article and Find Full Text PDF

Stormwater ponds (SWPs) are an increasingly common management tool for flood control and water quality protection in urban areas. They are designed to buffer the impacts to downstream environments caused by altered hydrologic, chemical, biological, and ecological processes in developed watersheds. While small in size, they can have disproportionately large impacts on watersheds because they store, transform, and release inputs of carbon (C) and nutrients, mainly nitrogen (N) and phosphorus (P).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!