Aims/hypothesis: Early compromised endothelial function challenges the ability of individuals with type 1 diabetes to perform normal physical exercise. The exact mechanisms underlying this vascular limitation remain unknown, but may involve either formation or metabolism of nitric oxide (NO), a major vasodilator, whose activity is known to be compromised by oxidative stress.

Methods: Muscle microvascular reactivity (near-infrared spectroscopy) to an incremental exhaustive bout of exercise was assessed in 22 adults with uncomplicated type 1 diabetes (HbA 64.5 ± 15.7 mmol/mol; 8.0 ± 1.4%) and in 21 healthy individuals (18-40 years of age). NO-related substrates/metabolites were also measured in the blood along with other vasoactive compounds and oxidative stress markers; measurements were taken at rest, at peak exercise and after 15 min of recovery. Demographic characteristics, body composition, smoking status and diet were comparable in both groups.

Results: Maximal oxygen uptake was impaired in individuals with type 1 diabetes compared with in healthy participants (35.6 ± 7.7 vs 39.6 ± 6.8 ml min kg, p < 0.01) despite comparable levels of habitual physical activity (moderate to vigorous physical activity by accelerometery, 234.9 ± 160.0 vs 280.1 ± 114.9 min/week). Compared with non-diabetic participants, individuals with type 1 diabetes also displayed a blunted exercise-induced vasoreactivity (muscle blood volume at peak exercise as reflected by ∆ total haemoglobin, 2.03 ± 5.82 vs 5.33 ± 5.54 μmol/l; interaction 'exercise' × 'group', p < 0.05); this was accompanied by lower K concentration (p < 0.05), reduced plasma L-arginine (p < 0.05)-in particular when HbA was high (mean estimation: -4.0, p < 0.05)-and lower plasma urate levels (p < 0.01). Nonetheless, exhaustive exercise did not worsen lipid peroxidation or other oxidative stress biomarkers, and erythrocytic enzymatic antioxidant resources were mobilised to a comparable extent in both groups. Nitrite and total nitrosation products, which are potential alternative NO sources, were similarly unaltered. Graphical abstract CONCLUSIONS/INTERPRETATION: Participants with uncomplicated type 1 diabetes displayed reduced availability of L-arginine, the essential substrate for enzymatic nitric oxide synthesis, as well as lower levels of the major plasma antioxidant, urate. Lower urate levels may reflect a defect in the activity of xanthine oxidase, an enzyme capable of producing NO from nitrite under hypoxic conditions. Thus, both canonical and non-canonical NO production may be reduced. However, neither of these changes exacerbated exercise-induced oxidative stress.

Trial Registration: clinicaltrials.gov NCT02051504.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-020-05329-8DOI Listing

Publication Analysis

Top Keywords

type diabetes
16
nitric oxide
8
adults uncomplicated
8
uncomplicated type
8
individuals type
8
circulating biomarkers
4
biomarkers nitric
4
oxide bioactivity
4
bioactivity impaired
4
impaired muscle
4

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear.

View Article and Find Full Text PDF

Pregnancy issues such as gestational hypertension, preeclampsia, and gestational diabetes mellitus (GDM) are significant contributors to long-term cardiovascular diseases (CVDs) in women. Recent research has proved the impact of exercise on improving cardiovascular outcomes, particularly in women with pregnancy-related disorders. This review explores the outcomes of various exercise interventions on cardiovascular health in pregnant women.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!