A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer-aided diagnosis of pectus excavatum using CT images and deep learning methods. | LitMetric

Computer-aided diagnosis of pectus excavatum using CT images and deep learning methods.

Sci Rep

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 510640, China.

Published: November 2020

Pectus excavatum (PE) is one of the most common chest wall defects. Accurate assessment of PE deformities is critical for effective surgical intervention. Index-based evaluations have become the standard for objectively estimating PE, however, these indexes cannot represent the whole information of chest CT images and may associated with significant error due to the individual differences. To overcome these limitations, this paper developed a computer-aided diagnosis (CAD) system based on the convolutional neural network (CNN) to automatically learn discriminative features and classify PE images. We also adopted block-wise fine-tuning methods based on the transfer learning strategy to reduce the potential risk of overfitting caused by limited data and experimentally explored the best fine-tuning degree. Our method achieved a high level of classification accuracy with 94.76% for PE diagnosis. Furthermore, we proposed a majority rule-based voting method to provide a comprehensively diagnostic results for each patient, which integrated the classification results of the whole thorax. The promising results support the feasibility of our proposed CNN-based CAD system for automatic PE diagnosis, which paves a way for comprehensive assessments of PE in clinics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680109PMC
http://dx.doi.org/10.1038/s41598-020-77361-yDOI Listing

Publication Analysis

Top Keywords

computer-aided diagnosis
8
pectus excavatum
8
cad system
8
diagnosis pectus
4
excavatum images
4
images deep
4
deep learning
4
learning methods
4
methods pectus
4
excavatum common
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!