Singly and multiply charged molecular ions are found in diverse environments and hold relevance for a wide range of research areas like combustion chemistry, accelerator physics, atmospheric sciences, plasma physics, astrophysics etc. Molecular dications are of special significance as they can be generated and studied comparatively easily in laboratory experiments. And they have enabled exploration of new and exciting phenomenon such as hydrogen migration, inter-atomic Coulombic decay, plasmonic excitations, orbital tomography etc. The lifetime of a molecular dication is one of its fundamental characteristics, whose measurement contributes to strengthening ab initio calculations and in predicting the concentration of its dissociation products. Most of the already reported lifetimes of molecular dications are in the range of nanoseconds to seconds and metastable states with lifetimes of the order of picoseconds have only been theoretical predicted and an experimental verification is pending. We present a method of measuring subrotational lifetimes of molecular dications formed in three-body sequential breakup of polyatomic molecular precursors. Specifically, we have measured the subrotational lifetime of [Formula: see text] , which is formed as an intermediate in the three-body sequential fragmentation of [Formula: see text]. The lifetime against dissociation is determined to be a fraction of the rotational period of [Formula: see text] and is of the order of few picoseconds. The method proposed is general and is not restricted to triatomic precursors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679410 | PMC |
http://dx.doi.org/10.1038/s41598-020-77408-0 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
The formation of following the double ionization of small organic compounds via a roaming mechanism, which involves the generation of H and subsequent proton abstraction, has recently garnered significant attention. Nonetheless, a cohesive model explaining trends in the yield of characterizing these unimolecular reactions is yet to be established. We report yield and femtosecond time-resolved measurements following the strong-field double ionization of CHX molecules, where X = OD, Cl, NCS, CN, SCN, and I.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, Shaanxi, People's Republic of China.
Electron-nuclear coupling plays a crucial role in strong laser induced molecular dissociation dynamics. The interplay between electronic and nuclear degrees of freedom determines the pathways and outcomes of molecular fragmentation. However, a full quantum mechanical treatment of electron-nuclear dynamics is computationally intensive.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
Quaternary ammonium functionalized covalent organic frameworks (COFs) have great potential to enhance hydroxide transport owing to crystalline ordered 1D nanochannels, however, suffer from limited quaternary ammonium functional monomers and poor membrane-forming ability. In this work, a novel aminopropyl quaternary ammonium-functionalized COF (DCOF) is designed and synthesized via a bottom-up strategy. The self-supporting DCOF membrane exhibits high crystallinity with a dense and orderly arrangement of quaternary ammonium groups (IEC, 2.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
Chem Sci
November 2024
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
A cyclo[4]pyrrole bearing pyrrole C()-C() direct linkages, a contracted porphyrin analogue with no -carbon bridge, was synthesized from an oligoketone-related precursor. X-ray crystallography and StrainViz analysis revealed a non-planar structure with a total strain of 20.8 kcal mol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!