A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Screening of CNVs using NGS data improves mutation detection yield and decreases costs in genetic testing for hereditary cancer. | LitMetric

Screening of CNVs using NGS data improves mutation detection yield and decreases costs in genetic testing for hereditary cancer.

J Med Genet

Hereditary Cancer Program, Joint Program on Hereditary Cancer, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL-ONCOBELL, L'Hospitalet de Llobregat, Spain

Published: January 2022

Introduction: Germline CNVs are important contributors to hereditary cancer. In genetic diagnostics, multiplex ligation-dependent probe amplification (MLPA) is commonly used to identify them. However, MLPA is time-consuming and expensive if applied to many genes, hence many routine laboratories test only a subset of genes of interest.

Methods And Results: We evaluated a next-generation sequencing (NGS)-based CNV detection tool (DECoN) as first-tier screening to decrease costs and turnaround time and expand CNV analysis to all genes of clinical interest in our diagnostics routine. We used DECoN in a retrospective cohort of 1860 patients where a limited number of genes were previously analysed by MLPA, and in a prospective cohort of 2041 patients, without MLPA analysis. In the retrospective cohort, 6 new CNVs were identified and confirmed by MLPA. In the prospective cohort, 19 CNVs were identified and confirmed by MLPA, 8 of these would have been lost in our previous MLPA-restricted detection strategy. Also, the number of genes tested by MLPA across all samples decreased by 93.0% in the prospective cohort.

Conclusion: Including an in silico germline NGS CNV detection tool improved our genetic diagnostics strategy in hereditary cancer, both increasing the number of CNVs detected and reducing turnaround time and costs.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107366DOI Listing

Publication Analysis

Top Keywords

hereditary cancer
12
genetic diagnostics
8
cnv detection
8
detection tool
8
turnaround time
8
retrospective cohort
8
number genes
8
mlpa prospective
8
prospective cohort
8
cohort cnvs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!