One of the most challenging issues among experts is how to improve motor skills that have already been highly trained. Recent studies have proposed importance of both genetic predisposition and accumulated amount of practice for standing at the top of fields of sports and performing arts. In contrast to the two factors, what is unexplored is how one practices impacts on experts' expertise. Here, we show that training of active somatosensory function (active haptic training) enhances precise force control in the keystrokes and somatosensory functions specifically of expert pianists, but not of untrained individuals. By contrast, training that merely repeats the task with provision of error feedback, which is a typical training method, failed to improve the force control in the experts, but not in the untrained. These findings provide evidence that the limit of highly trained motor skills could be overcome by optimizing training methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679166 | PMC |
http://dx.doi.org/10.1126/sciadv.abd2558 | DOI Listing |
Sensors (Basel)
January 2025
2Ai, School of Technology, IPCA, 4750-810 Barcelos, Portugal.
Virtual reality (VR) has gained significant attention in various fields including healthcare and industrial applications. Within healthcare, an interesting application of VR can be found in the field of physiotherapy. The conventional methodology for rehabilitating upper limb lesions is often perceived as tedious and uncomfortable.
View Article and Find Full Text PDFBackground: Lens implantation becomes a major concern in patients lacking posterior capsular support, but various methods are available for rehabilitation. In such patients, scleral-fixated intraocular lens (SFIOL) implantation is preferred due to its fewer complications and better simulation of the natural lens position. In this non-randomized retrospective clinical study, we aimed to assess visual outcomes after sutureless SFIOL implantation in aphakic patients and factors affecting visual outcomes.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, USA.
A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.
View Article and Find Full Text PDFCureus
January 2025
Research, Clarity Science LLC, Narragansett, USA.
The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!