Two-dimensional lead halide perovskites with confined excitons have shown exciting potentials in optoelectronic applications. It is intriguing but unclear how the soft and polar lattice redefines excitons in layered perovskites. Here, we reveal the intrinsic exciton properties by investigating exciton spin dynamics, which provides a sensitive probe to exciton coulomb interactions. Compared to transition metal dichalcogenides with comparable exciton binding energy, we observe orders of magnitude smaller exciton-exciton interaction and, counterintuitively, longer exciton spin lifetime at higher temperature. The anomalous spin dynamics implies that excitons exist as exciton polarons with substantially weakened inter- and intra-excitonic interactions by dynamic polaronic screening. The combination of strong light matter interaction from reduced dielectric screening and weakened inter-/intra-exciton interaction from dynamic polaronic screening explains their exceptional performance and provides new rules for quantum-confined optoelectronic and spintronic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679171 | PMC |
http://dx.doi.org/10.1126/sciadv.abb7132 | DOI Listing |
ACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
serovar Mbandaka, a prevalent foodborne pathogen, poses a threat to public health but remains poorly understood. We have determined the phylogenomic tree, genetic diversity, virulence, and antimicrobial resistance (AMR) profiles on a large genomic scale to elucidate the evolutionary dynamics within the Mbandaka pan-genome. The polyphyletic nature of this serovar is characterized by two distinct phylogenetic groups and inter-serovar recombination boundaries, that potentially arising from recombination events at the H2-antigen loci.
View Article and Find Full Text PDFSmall
January 2025
eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala, 695551, India.
Iontronic memtransistors have emerged as technologically superior to conventional memristors for neuromorphic applications due to their low operating voltage, additional gate control, and enhanced energy efficiency. In this study, a side-gated iontronic organic memtransistor (SG-IOMT) device is explored as a potential energy-efficient hardware building block for fast neuromorphic computing. Its operational flexibility, which encompasses the complex integration of redox activities, ion dynamics, and polaron generation, makes this device intriguing for simultaneous information storage and processing, as it effectively overcomes the von Neumann bottleneck of conventional computing.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
PLoS Pathog
January 2025
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!