Regional Tau Effects on Prospective Cognitive Change in Cognitively Normal Older Adults.

J Neurosci

Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720.

Published: January 2021

Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of β-amyloid (Aβ) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer's disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using F-flortaucipir (FTP) and C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aβ in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aβ+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aβ, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aβ, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages. Tau and β-amyloid (Aβ) are hallmarks of Alzheimer's disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aβ may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aβ, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aβ+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810658PMC
http://dx.doi.org/10.1523/JNEUROSCI.2111-20.2020DOI Listing

Publication Analysis

Top Keywords

memory decline
20
tau deposition
16
cognitively normal
12
older adults
12
tau
12
normal aging
12
memory
10
entorhinal cortex
8
β-amyloid aβ
8
alzheimer's disease
8

Similar Publications

Background: Effective detection of cognitive impairment in the primary care setting is limited by lack of time and specialized expertise to conduct detailed objective cognitive testing and few well-validated cognitive screening instruments that can be administered and evaluated quickly without expert supervision. We therefore developed a model cognitive screening program to provide relatively brief, objective assessment of a geriatric patient's memory and other cognitive abilities in cases where the primary care physician suspects but is unsure of the presence of a deficit.

Methods: Referred patients were tested during a 40-min session by a psychometrist or trained nurse in the clinic on a brief battery of neuropsychological tests that assessed multiple cognitive domains.

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

The Role of SIRT1-BDNF Signaling Pathway in Fluoride-Induced Toxicity for Glial BV-2 Cells.

Biol Trace Elem Res

January 2025

Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.

Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.

View Article and Find Full Text PDF

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Background: Older adults with mild behavioral impairment (MBI) are at the higher risk of developing dementia compared to those without MBI, leading to decreased quality of life (QoL). Addressing MBI in older adults provides valuable opportunities to prevent dementia.

Objectives: This study aimed to determine the effects of traditional Thai folk dance combined with a cognitive stimulation program on MBI, QoL, subjective cognitive decline (SCD), and cognitive functioning in older Thai adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!