To meet the growing demand for soybean it is necessary to increase crop yield, even in low water availability conditions. To circumvent the negative effects of water deficit, application of biostimulants with anti-stress effect has been adopted, including products based on fulvic acids and Ascophyllum nodosum (L.) seaweed extracts. In this study, we determined which formulation and dosage of a biostimulant is more efficient in promoting the recovery of soybean plants after stress due to water deficit. The experiment was conducted in a greenhouse, in a double-factorial randomized block design with two additional factors, four repetitions and eleven treatments consisting of three biostimulant formulations (F1, F2 and F3), and three dosages (0.25; 0.50 and 1.0 kg ha); a control with water deficit and a control without water deficit. Soybean plants were kept at 50% of the pot's water capacity for three days, then rehydrated and submitted to the application of treatments with biostimulant. After two days of recovery, growth, physiological, biochemical and yield parameters were evaluated. All plants that received the application of the biostimulant produced more than the water-stressed control plants. The biostimulant provided higher photosynthetic rates, more efficient mechanisms for dissipating excess energy and higher activities of antioxidant enzymes. Plants treated with biostimulant were more efficient in the recovery of the metabolic activities after rewatering, resulting in increased soybean tolerance to water deficit and reduced yield losses. The best result obtained was through the application of formulation 2 of the biostimulant at a dosage of 0.25 kg ha.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.11.008DOI Listing

Publication Analysis

Top Keywords

water deficit
20
increased soybean
8
soybean tolerance
8
water
8
tolerance water
8
biostimulant
8
based fulvic
8
fulvic acids
8
acids ascophyllum
8
ascophyllum nodosum
8

Similar Publications

Therapeutic Potential of Shilong Qingxue Granule and Its Extract Against Glutamate Induced Neural Injury: Insights from In Vivo and In Vitro Models.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.

Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.

Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.

View Article and Find Full Text PDF

Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.

View Article and Find Full Text PDF

Greening but enhanced vegetation water stress in the Yellow River Basin: A holistic perspective.

J Environ Manage

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Water Resources Department, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, 100038, China.

The Yellow River Basin (YRB) has emerged as a focal point of global vegetation greening due to climate change and human activities. Given its ecological vulnerability and intense human activities, environmental sustainability has become an urgent concern for scholars. Current research on the hydrological effects of vegetation greening, from a reductionist perspective, still struggle to answer the crucial question that whether vegetation water stress is increasing or decreasing.

View Article and Find Full Text PDF

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!