Current studies tend to combine different advanced treatment technologies to reduce costs and increase efficiency. The objective of this work was to assess the combination of ozonation and UV/HO with activated carbon adsorption for the removal of effluent quality parameters and micropollutants from secondary effluent samples. The experiments were carried out using the following configurations: O + GAC + O (1); O + GAC + UV/HO (2); UV/HO + GAC + O (3); UV/HO + GAC + UV/HO (4). Configurations 1, 3 and 4 were the most efficient for organic matter removal, while configuration 1 had the lowest cost on laboratory scale. An additional ultra-filtration membrane unit (UF) was tested at the end of configuration 1, which was optimized in terms of ozone doses for the removal of three organophosphate micropollutants in ultrapure water (TNBP, TCIPP and TPHP at 10 μgL). The best cost-effective configuration of this treatment train was the one using 1 mg L of ozone before and after GAC, which achieved around 100% of micropollutants abatement. The role of each treatment to the final micropollutant removal was also discussed, being the first ozone treatment responsible for about 15% removal of the mixture of contaminants, while GAC was responsible for an additional 80% removal. The complete treatment train reached almost 100% of contaminants removal (under detection limit of the method), as well as added security to the system. The achieved results were also compared to international reuse legislations, proving that the combination of O and GAC was an interesting option to achieve enough quality for some reuse purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143498 | DOI Listing |
Front Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangzhou Environmental Technology Center, Guangzhou, Guangdong 510235, China.
Sulfamethoxazole (SMX) and its antibiotic resistance genes (ARGs) are potential threats to public health. Microwave catalytic technology is an efficient environmental remediation technology, and a reasonable design of the catalyst enables the system to achieve an ideal remediation effect under low microwave power. In this study, a microwave catalyst (FeCO-2) that activates molecular oxygen (O) was designed on the basis of rational theoretical organization.
View Article and Find Full Text PDFChemosphere
December 2024
Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, United States. Electronic address:
Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.
View Article and Find Full Text PDFInt J Hyg Environ Health
December 2024
Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!