Increases in harmful algal blooms has negatively impacted many surface-sourced drinking water utilities. To control these blooms, many water utilities implement pre-oxidation with ozone, chlorine, or permanganate; however, pre-oxidation of algae has both positive and negative water quality outcomes. This study investigated ferrate (Fe(VI)) as an alternative oxidant by measuring its effect on cell lysing, surface characteristics, and coagulation in waters containing the cyanobacteria Microcystis aeruginosa. Bench scale studies were conducted to examine the complex combination of processes in a Fe(VI)-algae system. These processes were characterized by fluorescence index, surface charge, collision frequency modeling, particle counts and sphericity, total nitrogen, and ferrate decomposition measurements. Results showed that Fe(VI) lysed algal cells, but further oxidation of released organic matter is possible. The presence of algae did not significantly impact the rate of Fe(VI) decomposition. Fe(VI) pre-oxidation may also be capable of decreasing the formation of nitrogenated disinfection byproducts through subsequent oxidation of released nitrogen rich organic matter. Streaming current and zeta potential results indicate destabilization of the resulting algae and iron suspension was incomplete under most conditions. Particle collision frequency modeling indicates fluid shear to be an important aggregation mechanism of the resulting suspension. Overall, Fe(VI) is a viable alternative to other strong oxidants for water utilities struggling with harmful algal blooms, but the final fate of the resulting organic matter must be further studied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128956DOI Listing

Publication Analysis

Top Keywords

water utilities
12
organic matter
12
harmful algal
8
algal blooms
8
collision frequency
8
frequency modeling
8
oxidation released
8
fevi
6
physicochemical implications
4
implications cyanobacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!