In the present study, carbon isotope effects were investigated during the photodegradation of polybrominated diphenyl ethers (PBDEs) by compound-specific stable isotope analysis (CSIA). Five PBDE congeners (BDE 85, 99, 100, 153 and 154) in n-hexane were individually exposed to simulated sunlight for as long as 15 h, except for BDE 100 (24 h). Consecutive debromination of PBDE by photolysis in n-hexane was confirmed by the clear C enrichment of mother congeners and successive depletion of δC values for the photodegradation products with decreasing degree of bromination, which can be attributed to mass-dependent isotope fractionation. The observed variation in the isotope fractionation trends for the para-debrominated products might be linked to the different photocatalytic activities of the PBDE congeners. Higher fractionation was observed for penta-BDEs (ε-2.2 ± 0.45‰ and -2.3 ± 0.26‰ for BDE 85 and BDE 99, respectively) compared to that for hexa-BDEs (ε-1.7 ± 0.41‰, and -1.3 ± 0.12‰ for BDE 153 and BDE 154, respectively). Normal isotope effects (AKIE > 1) observed in our study supports the utility of CSIA for the evaluation of the photodegradation of PBDEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!