On-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS) is a powerful technique for high throughput sample clean-up and analyte preconcentration, separation, detection, and characterization. The most typical design due to its simplicity and low cost is unidirectional SPE-CE-MS. However, in this configuration, the sample volumes introduced by pressure depend on the dimensions of the separation capillary and some matrix components could be irreversibly adsorbed in its inner walls. Furthermore, in many cases, the requirements of on-line preconcentration are incompatible with the background electrolyte necessary for an efficient separation and sensitive MS detection. Here, we present SPE-CE-MS with a nanoliter valve (nvSPE-CE-MS) to overcome these drawbacks while keeping the design simple. The nvSPE-CE-MS system is operated with a single CE instrument and two capillaries for independent and orthogonal SPE preconcentration and CE separation, which are interfaced through an external and electrically isolated valve with a 20 nL sample loop. The instrumental setup is proved for the analysis of opioid and amyloid beta peptide biomarkers in standards and plasma samples. NvSPE-CE-MS allowed decreasing the limits of detection (LODs) 200 times with regard to CE-MS. Compared to unidirectional SPE-CE-MS, peak efficiencies were better and repeatabilities similar, but total analysis times longer and LODs for standards slightly higher due to the heart-cut operation and the limited volume of the valve loop. This small difference on the LODs for standards was compensated for plasma samples by the improved tolerance of nvSPE-CE-MS to complex sample matrices. In view of these results, the presented setup can be regarded as a promising versatile alternative to avoid complicated matrix samples entering the separation capillary in SPE-CE-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.09.036 | DOI Listing |
J Chromatogr A
January 2025
Grupo MINTOTA, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, C/ Dr. Moliner 50, Burjassot, Valencia E46100, Spain.
In this work, a DNPH doped PDMS based membrane was developed to facilitate carbonyl compound derivatization. This membrane delivers DNPH in presence of carbonyl compounds to form hydrazones. Subsequently, the resulting hydrazones are preconcentrated, separated and detected by in-tube solid phase microextraction (IT-SPME) coupled on-line with capillary liquid chromatography (CapLC) with Uv-Vis diode array detection (DAD).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany. Electronic address:
The number of prescriptions for new direct oral anticoagulants (DOACs) apixaban, edoxaban, rivaroxaban and dabigatran has increased exponentially in recent years, increasingly replacing the old gold standard, vitamin-K-antagonists. Due to their wide therapeutic range, therapeutic drug monitoring (TDM) is not required, although it has been proven that this could significantly reduce side effects. In order to develop a cost-efficient and simple method for the simultaneous detection of the DOACs and phenprocoumon, a new technology for sample preparation from capillary blood in the ambulant sector named VAMS® was integrated and an LC-MS detector with on-line solid phase extraction (SPE) applying a Turboflow HTLC Cyclone 1.
View Article and Find Full Text PDFAnal Chim Acta
December 2024
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Background: Traditional blood drug analysis involves large blood consumption and complicated operations and a further reduction in blood consumption is urgently needed. Chip-based monolithic column microextraction is a good strategy for the pretreatment of small-volume samples, and new monolithic materials is the critical factor. Covalent organic frameworks (COFs) are good adsorbents due to large specific surface area and rich conjugated structure.
View Article and Find Full Text PDFAnal Chem
November 2024
College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China.
On-site mass spectrometry (MS) analysis plays a crucial role in timely understanding chemical compositions of field samples but presents a challenge to miniaturization, portability, and sensitivity. In this work, a portable MS approach was developed by integrating biocompatible solid-phase microextraction (SPME) and a nano-electrospray ionization (nESI) emitter into a kit to couple miniature MS (mMS). The SPME fiber was used for on-site extractive sampling of analytes from complex liquid samples and living organisms and was then inserted into an nESI emitter for on-site MS analysis via the facile kit.
View Article and Find Full Text PDFMolecules
September 2024
School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!