Background: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania.

Methods: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species.

Results: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037).

Conclusion: Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678205PMC
http://dx.doi.org/10.1186/s12936-020-03495-zDOI Listing

Publication Analysis

Top Keywords

malaria vectors
12
humans cattle
12
urban setting
12
anopheles arabiensis
8
arabiensis anopheles
8
anopheles gambiae
8
urban
8
gambiae urban
8
preference
8
host preference
8

Similar Publications

Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review.

Pathogens

January 2025

Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.

Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.

View Article and Find Full Text PDF

Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification.

View Article and Find Full Text PDF

Interspecific competition between mosquito larvae may affects adult vectorial capacity, potentially reducing disease transmission. It also influences population dynamics, and cannibalistic and predatory behaviors. However, knowledge of interspecific competition between and species is limited.

View Article and Find Full Text PDF

Pantothenate (Pan), or vitamin B5, is essential for the synthesis of co-enzyme A (CoA), acetyl-CoA, and numerous downstream physiological processes. We previously demonstrated that Pan is not only essential for mosquito survival, but also for the development of malaria parasites within the mosquito, suggesting that targeting Pan and CoA biosynthesis may be a novel approach for malaria control. However, little is known about how Pan is acquired and mobilized within the mosquito.

View Article and Find Full Text PDF

Background: Despite implementation of effective interventions in the past two decades, malaria is still a major public health problem in Tanzania. This study assessed the prevalence and drivers of malaria infections among symptomatic and asymptomatic members of selected communities from five regions with varying endemicity in mainland Tanzania.

Methods: A cross-sectional community survey was conducted in five districts, including one district/region in Kagera, Kigoma, Njombe, Ruvuma and Tanga from July to August 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!