NbN-based detectors can detect light from the granular regime (single or few photons) up to weak continuous photon fluxes at wavelengths ranging from visible light up to mid-IR. The article reports our recent results on a novel linear detector, the waveguide-integrated hot electron bolometer (HEB) capable to measure photon fluxes of large coherent beams in a regime in which superconducting nanowire single photon detectors (SNSPDs) are not efficient due to their strong nonlinearity. SNSPDs, photon number resolving detectors and amplitude multiplexing readout schemes, all integrated on photonic circuits are also discussed in the paper. The compatibility of the integrated HEB detectors with the SNSPDs technology can allow the characterization of complex non classical states of light within the same chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abcc97 | DOI Listing |
Biomed Phys Eng Express
December 2024
Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
Adv Sci (Weinh)
December 2024
State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China.
Developing high-performance Ca-based materials that can work for long-term heat transfer and storage in concentrated solar power plants is crucial to achieve the large-scale conversion of solar photon fluxes to dispatchable electricity. This work demonstrates that a series of Mn, Zr co-doped CaCO nanomaterials with the 3D ordered macroporous (3DOM) skeletons are successfully prepared by a novel strategy of templated metal salt co-precipitation. The characterization results indicate that a majority of Zr and Mn are atomically dispersed into the highly-crystallized CaCO framework, whereas a minor amount of Mn is present in the form of CaMnO nanoparticles (NPs).
View Article and Find Full Text PDFWe propose a method to convert fundamental modes into orbital angular momentum (OAM) modes through chiral dynamics induced by gauge fluxes in silicon waveguides. By integrating a trench into a few-mode waveguide, we induce the rotation of TE and TE modes, naturally generating the gauge flux for the synthesized OAM modes. By precisely controlling the gauge flux, we achieve chiral dynamics that optimize the conversion efficiency of OAM modes at specific propagation distances, addressing challenges posed by mode degeneracy.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Centre for Optical and Electromagnetic Research, State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Talanta
February 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China. Electronic address:
Ferroptosis exhibits a critical role in the occurrence and progression of hepatic ischemia-reperfusion injury (HIRI), which is closely linked to the down regulation of biothiols. Visualization of biothiols in ferroptosis is of great significance for elucidating the pathological mechanism of HIRI as well as developing new clinical treatment strategies. However, reliable tools for monitoring biothiols and demonstrating their dynamic changes in ferroptosis-mediated HIRI are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!