Rapid clearance of thrombolytics from blood following intravenous injection is a major clinical challenge in cardiovascular medicine. To overcome this barrier, nanoparticle (NP) based drug delivery systems have been reported. Although superior than conventional therapy, a large proportion of the injected NP is still cleared by the reticuloendothelial system. Previously, we and others showed that ex vivo attachment of bioscavengers, thrombolytics, and nanoparticles (NPs) to glycophorin A receptors on red blood cells (RBCs) improved the blood half-life. This is promising, but ex-vivo approaches are cumbersome and challenging to translate clinically. Here, we developed a novel Ter119-polymeric NP containing tissue plasminogen activator for on-demand targeting of GPA receptors in vivo. Upon intravenous injection, the Ter119-NPs achieved remarkable RBC labeling efficiencies (>95%), resulting in marked enhancement of blood residence time of tPA from minutes to several days without any morphological, hematological, and histological complications. Our approach of RBC labeling with the NPs also prevented reticuloendothelial detections and the activations of innate and adaptive immune system. Data suggest that real-time targeting of therapeutics to RBC with NPs can potentially improve outcomes and reduce complications against a variety chronic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.11.034DOI Listing

Publication Analysis

Top Keywords

rapid clearance
8
clearance thrombolytics
8
red blood
8
blood cells
8
intravenous injection
8
rbc labeling
8
blood
5
reprogramming rapid
4
thrombolytics nanoparticle
4
nanoparticle encapsulation
4

Similar Publications

Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.

View Article and Find Full Text PDF

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases.

Neurobiol Dis

January 2025

Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China. Electronic address:

Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND.

View Article and Find Full Text PDF

Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases.

View Article and Find Full Text PDF

Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!