Dysregulated BMP signaling through ACVR1 impairs digit joint development in fibrodysplasia ossificans progressiva (FOP).

Dev Biol

Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States. Electronic address:

Published: February 2021

AI Article Synopsis

Article Abstract

The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1 mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1 mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035973PMC
http://dx.doi.org/10.1016/j.ydbio.2020.11.004DOI Listing

Publication Analysis

Top Keywords

bmp signaling
20
joint development
16
joint
11
signaling acvr1
8
digit
8
digit joint
8
development
8
fibrodysplasia ossificans
8
ossificans progressiva
8
progressiva fop
8

Similar Publications

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Interplay of canonical and LIMK mediated non-canonical BMP signaling is essential for regulating differential thickness and invagination during chick forebrain roof plate morphogenesis.

Dev Biol

January 2025

Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India; Mehta Family Center for Engineering in Medicine (MFCEM), Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India. Electronic address:

Telencephalic hemisphere formation is a complex and precisely timed process, which begins in the chick forebrain with an invagination in the middle of the roof plate. However, the factor(s) that determine the position/site of invagination in the roof plate remain to be elucidated. In this study, we have demonstrated that as development proceeds, a region of lower thickness appears in the middle of the roof plate, which marks the position where the invagination begins.

View Article and Find Full Text PDF

The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy.

Reprod Sci

January 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.

The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms.

View Article and Find Full Text PDF

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!