A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. | LitMetric

Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field-testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large-scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tpg2.20048DOI Listing

Publication Analysis

Top Keywords

greenhouse phenotyping
12
tree breeding
8
genomic selection
8
selection decisions
8
selection
6
greenhouse
5
accelerating forest
4
forest tree
4
breeding integrating
4
integrating genomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!