During the Last Glacial Maximum (LGM), global sea levels were 120-130 m lower than today, resulting in the emergence of most continental shelves and extirpation of subtidal organisms from these areas. During the interglacial periods, rapid inundation of shelf regions created a dynamic environment for coastal organisms, such as the charismatic leafy seadragon (Phycodurus eques, Syngnathidae), a brooder with low dispersal ability inhabiting kelp beds in temperate Australia. Reconstructions of the palaeoshoreline revealed that the increase of shallow areas since the LGM was not uniform across the species' range and we investigated the effects of these asymmetries on genetic diversity and structuring. Using targeted capture of 857 variable ultraconserved elements (UCEs, 2,845 single nucleotide polymorphisms) in 68 individuals, we found that the regionally different shelf topographies were paralleled by contrasting population genetic patterns. In the west, populations may not have persisted through sea-level lows because shallow seabed was very limited. Shallow genetic structure, weak expansion signals and a westward cline in genetic diversity indicate a postglacial recolonization of the western part of the range from a more eastern location following sea-level rise. In the east, shallow seabed persisted during the LGM and increased considerably after the flooding of large bays, which resulted in strong demographic expansions, deeper genetic structure and higher genetic diversity. This study suggests that postglacial flooding with rising sea levels produced locally variable signatures in colonizing populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15744 | DOI Listing |
The novel HLA-C*03:678 allele differs from HLA-C*03:04:01:02 by single non-synonymous nucleotide substitution.
View Article and Find Full Text PDFHLA
January 2025
Strand Life Sciences, Bangalore, Karnataka, India.
The novel HLA-DQB1*06:469 allele differs from HLA-DQB1*06:01:01:01 by one nucleotide substitution in codon 187 in exon 3.
View Article and Find Full Text PDFCancer
February 2025
Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, G-STeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.
Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.
Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.
Genes Chromosomes Cancer
January 2025
Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!