Iron (Fe) is a trace element necessary for plant growth. Many land plants have evolved a set of mechanisms associated with the Fe absorption process to deal with the problem of insufficient Fe supply in the soil. During Fe absorption, reactive oxygen species (ROS) can be used as a signal to initiate a response to stress caused by Fe deficiency. However, the molecular mechanisms underlying the involvement of ROS in the Fe deficiency stress response remains unclear. In this study, we have identified a kinase, MxMPK6-2, from Malus xiaojinensis, an apple rootstock that is highly efficient at Fe absorption. MxMPK6-2 has been shown to be responsive to ROS signals during Fe deficiency, and MxMPK6-2 overexpression in apple calli enhanced its tolerance to Fe deficiency. We further screened for proteins in the Fe absorption pathway and identified MxbHLH104, a transcription factor which interacts with MxMPK6-2. MxbHLH104 can be phosphorylated by MxMPK6-2 in vivo, and we confirmed that its phosphorylation increased Fe absorption in apple calli under Fe deficiency, with the presence of ROS promoting this process. Overall, we have demonstrated that MxMPK6-2 is responsive to ROS signaling during Fe deficiency, and is able to control its response by regulating MxbHLH104.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraa547DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
apple rootstock
8
mxmpk6-2 responsive
8
responsive ros
8
apple calli
8
deficiency
7
mxmpk6-2
6
absorption
5
ros
5

Similar Publications

Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis.

Clin Transl Med

January 2025

Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.

Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.

Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!