Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, = 11), clear cell renal cell carcinoma (ccRCC, = 12) and chromophobe renal cell carcinoma (ChRCC, = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646834PMC
http://dx.doi.org/10.18632/oncotarget.27787DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
tissue sections
12
differentiation renal
8
renal cancer
8
spectrometry imaging
8
rapid proteome
8
proteome profiling
8
features tumor
8
msi rapid
8
rapid lc-ms/ms-based
8

Similar Publications

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.

View Article and Find Full Text PDF

Drug-Drug Interaction Between Rifampicin and Albuvirtide: A Phase 1, Randomized, Open-Label Study.

J Clin Pharmacol

January 2025

Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.

Albuvirtide (ABT) is a novel long-acting fusion inhibitor for human immunodeficiency virus type 1 (HIV-1), and may be co-administered with rifampicin (RIF) in patients concurrent with tubercle bacillus and HIV-1. This study was conducted to investigate the pharmacokinetic effect of co-administration of the two drugs. In the study, 24 healthy volunteers were randomized to receive ABT alone or with RIF.

View Article and Find Full Text PDF

Cloves (), a tree in the Myrtaceae family, are indigenous to the Maluku Islands in Indonesia and are widely utilized as a spice. Essential oils are commonly extracted from clove leaves, flower buds, and stalks. However, due to supply constraints, other clove species, notably , are sometimes used as substitutes, leading to lower-grade essential oils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!