Photocatalytic hydrogen evolution can effectively alleviate the troublesome global energy crisis by converting solar energy into the chemical energy of hydrogen. In order to realize efficient hydrogen generation, a variety of semiconductor materials have been extensively investigated, including TiO , CdS, g-C N , metal-organic frameworks (MOFs), and others. In recent years, to achieve higher photocatalytic performance and reach the level of large-scale industrial applications, photocatalysts decorated with transition metal phosphides (TMPs) have shone brightly because of their low cost, stable physical and chemical properties, and substitution for precious metals of TMPs. This Review highlights the preparation methods and properties associated with photocatalysis of TMPs. Moreover, the H generation efficiency of photocatalysts loaded with TMPs and the roles of TMPs in catalytic systems are also studied systematically. Apart from being co-catalysts, several TMPs can also serve as host catalysts to boost the activity of photocatalytic composites. Finally, the development prospects and challenges of TMPs are put forward, which is valuable for future researchers to expand the application of TMPs in photocatalytic directions and to develop more active photocatalytic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202002454DOI Listing

Publication Analysis

Top Keywords

transition metal
8
metal phosphides
8
photocatalytic hydrogen
8
hydrogen evolution
8
tmps
8
photocatalytic
6
progress transition
4
phosphides photocatalytic
4
hydrogen
4
evolution photocatalytic
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!