The expansion of shrubs across the Arctic tundra may fundamentally modify land-atmosphere interactions. However, it remains unclear how shrub expansion pattern is linked with key environmental drivers, such as climate change and fire disturbance. Here we used 40+ years of high-resolution (~1.0 m) aerial and satellite imagery to estimate shrub-cover change in 114 study sites across four burned and unburned upland (ice-poor) and lowland (ice-rich) tundra ecosystems in northern Alaska. Validated with data from four additional upland and lowland tundra fires, our results reveal that summer precipitation was the most important climatic driver (r = 0.67, p < 0.001), responsible for 30.8% of shrub expansion in the upland tundra between 1971 and 2016. Shrub expansion in the uplands was largely enhanced by wildfire (p < 0.001) and it exhibited positive correlation with fire severity (r = 0.83, p < 0.001). Three decades after fire disturbance, the upland shrub cover increased by 1077.2 ± 83.6 m  ha , ~7 times the amount identified in adjacent unburned upland tundra (155.1 ± 55.4 m  ha ). In contrast, shrub cover markedly decreased in lowland tundra after fire disturbance, which triggered thermokarst-associated water impounding and resulted in 52.4% loss of shrub cover over three decades. No correlation was found between lowland shrub cover with fire severity (r = 0.01). Mean summer air temperature (MSAT) was the principal factor driving lowland shrub-cover dynamics between 1951 and 2007. Warmer MSAT facilitated shrub expansion in unburned lowlands (r = 0.78, p < 0.001), but accelerated shrub-cover losses in burned lowlands (r = -0.82, p < 0.001). These results highlight divergent pathways of shrub-cover responses to fire disturbance and climate change, depending on near-surface permafrost and drainage conditions. Our study offers new insights into the land-atmosphere interactions as climate warming and burning intensify in high latitudes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15451DOI Listing

Publication Analysis

Top Keywords

arctic tundra
8
tundra ecosystems
8
divergent shrub-cover
4
shrub-cover responses
4
responses driven
4
driven climate
4
climate wildfire
4
wildfire permafrost
4
permafrost interactions
4
interactions arctic
4

Similar Publications

Large emissions of CO and CH due to active-layer warming in Arctic tundra.

Nat Commun

January 2025

Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.

Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the Lapland longspur, a wild arctic-breeding bird, reacts to extreme weather events and what coping strategies it employs.
  • The researchers analyze gene expression changes using RNA-seq to see how environmental stressors like a cold spring and a severe storm impact the bird's stress response, reproductive behaviors, and metabolism.
  • Key findings include the significant up-regulation of the FKBP5 gene in the hypothalamus, which contributes to understanding how the bird adapts to changing climates and provides resources for future genomic studies.
View Article and Find Full Text PDF

Potential risks of bacterial plant pathogens from thawing permafrost in the Alaskan tundra.

Ecotoxicol Environ Saf

December 2024

Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea. Electronic address:

Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers.

View Article and Find Full Text PDF

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition.

View Article and Find Full Text PDF

A new soil-dwelling mite species, Zerconopsis sibiricus sp. nov., is described from Russia based on the females, males, and nymphs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!