We report on the first example of a peroxouranium-containing {PW} wheel, [{(UO)(O)}(PWO)] (), which was synthesized by a one-pot reaction of UO(NO)·6HO with the 48-tungsto-8-phosphate wheel [HPWO] and aqueous hydrogen peroxide in a pH 6 lithium acetate solution at 50 °C. Polyanion comprises two tetrauranyl squares with side-on peroxo bridging ligands in the cavity of the {PW} wheel, and was isolated as the hydrated potassium-lithium salt KLi[{(UO)(O)}(PWO)]·133HO (), which was characterized in the solid state by single-crystal X-ray diffraction, as well as thermogravimetric and elemental analyses. A detailed Fourier transform infrared and Raman spectroscopy study was also performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02858 | DOI Listing |
Nanophotonics
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.
Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
CP2M, UMR 5128, CNRS, Universite Claude Bernard Lyon 1, Villeurbanne, 69616, France.
Within the context of polypropylene recycling by dissolution, the potential degradation of polypropylene in solution has been investigated using in situ NIR and Raman spectroscopy. Pure polypropylene, completely free of additives, and commercial polypropylene, low in additives, are degraded on purpose under different conditions. Genetic algorithm combined with partial least squares (GA-PLS) models have been built based on near-infrared (NIR) spectra, and partial least squares (PLS) models based on Raman spectra, to predict the mass average molar mass and the chain-scission rate, respectively, during the degradation process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt. Electronic address:
Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ - 42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.
Optical responses of twisted bilayer graphene at targeted wavelengths can be amplified by leveraging energy levels of van Hove singularities (VHS) via tuning periods of moiré superlattices. Therefore, precise control of twist angles as well as the moiré superlattices is necessary for fabricating integrated optoelectronic devices such as photodetectors and emitters. Although recent advances in twist angle control help the observation of correlated states in twisted magic-angle graphene structures, the impact of such precise control on enhanced optical absorption is still under investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!