Cerebrospinal fluid (CSF) biomarkers amyloid-β and tau have been validated for the antemortem diagnosis of Alzheimer disease (AD) and are included in the AT(N) research framework for AD. Recently, an AT(N) CSF profile has been described for dementia with Lewy bodies (DLB), a disorder which is difficult to distinguish clinically from AD, particularly early in the disease course. Herein we describe a 71-year old male who presented with an atypical dementia syndrome including years of stability after an initial abrupt decline, marked visuospatial dysfunction, and relative sparing of memory. CSF biomarkers combined with the pattern of cognitive symptoms made AD unlikely and were consistent with DLB. This classification was confirmed clinically, with the emergence of classic DLB symptoms, and at postmortem pathologic examination. This case highlights the role for AD CSF biomarkers in facilitating earlier diagnosis of non-Alzheimer neurodegenerative dementias.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WAD.0000000000000372DOI Listing

Publication Analysis

Top Keywords

csf biomarkers
12
alzheimer disease
8
atypical dementia
8
applying alzheimer
4
disease atn
4
atn diagnostic
4
diagnostic framework
4
framework atypical
4
dementia cerebrospinal
4
cerebrospinal fluid
4

Similar Publications

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

There is a pressing need for accessible biomarkers with high diagnostic accuracy for Alzheimer's disease (AD) diagnosis to facilitate widespread screening, particularly in underserved groups. Saliva is an emerging specimen for measuring AD biomarkers, with distinct contexts of use that could complement blood and cerebrospinal fluid and detect various analytes. An interdisciplinary, international group of AD and related dementias (ADRD) researchers convened and performed a narrative review of published studies on salivary AD biomarkers.

View Article and Find Full Text PDF

Introduction And State Of The Art: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects many organs throughout its course, most frequently the joints, skin and kidneys. Both the central (CNS) and peripheral (PNS) nervous systems are also often affected. T he involvement of the CNS has a negative prognosis in lupus patients.

View Article and Find Full Text PDF

Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain.

View Article and Find Full Text PDF

Essential hypertension (EH) with secondary insomnia is associated with increased risks of neuroinflammation, neuronal damage, and Alzheimer's disease (AD). However, its relationship with specific cerebrospinal fluid (CSF) biomarkers of neuronal damage and neuroinflammation remains unclear. This case-control study compared CSF biomarker levels across three groups: healthy controls (HC, n = 64), hypertension-controlled (HTN-C, n = 54), and hypertension-uncontrolled (HTN-U, n = 107) groups, all EH participants experiencing secondary insomnia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!