Dimesitylborylethynylated Arenes: Unique Electronic and Photophysical Properties Caused by Ethynediyl (C≡C) Spacers.

Chemistry

Laboratory for Chemistry and Life Sciences, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 2268503, Japan.

Published: March 2021

Herein, we report the synthesis and electrochemical and photophysical properties of aromatic hydrocarbons having one or two dimesitylborylethynyl peripherals. The mono- (1) and diboryl compounds (2), readily prepared by nucleophilic substitution reaction, are fairly stable to air and moisture in the solid state. The inserted ethynediyl (C≡C) spacer cancels the steric hindrance between the bulky dimesitylboryl groups and aromatic rings, leading to effective π conjugation over the B-C≡C-Ar linkages, as revealed by cyclic voltammetry. Despite the small structural differences, the photophysical properties of the benzene, naphthalene, and anthracene derivatives are different. Virtually no emission was observed from the benzene derivatives, whereas the anthracene derivatives emitted with high quantum yields both in solution and in the solid state. Notably, the naphthalene derivatives showed aggregation-induced emission behavior. Unlike the common sterically congested triarylborane derivatives reported so far, the anthracene derivatives showed π-π*-type absorption and emission bands, which derive from efficient intramolecular orbital interactions between the boron centers and anthracene moieties, as supported by DFT calculations. As a result, the dimesitylborylethynyl substituents effectively lower the LUMO levels of the aromatic hydrocarbon parts, whereas the HOMO levels are almost unaffected, thereby leading to materials with controllable HOMO-LUMO gaps.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202004744DOI Listing

Publication Analysis

Top Keywords

photophysical properties
12
anthracene derivatives
12
ethynediyl c≡c
8
solid state
8
derivatives
6
dimesitylborylethynylated arenes
4
arenes unique
4
unique electronic
4
electronic photophysical
4
properties caused
4

Similar Publications

A novel series of D-A-D-type 9-phenyl-9-phosphafluorene oxide (PhFlOP) derivatives was prepared and is reported herein. The synthetic protocol involved 5 steps from commercially available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final CsCO-facilitated nucleophilic substitution (77-91% yield). The characterization data obtained from IR and NMR spectroscopy (H, C, F, and P) as well as HRMS spectrometry were in full agreement with the expected structures, and single-crystal X-ray diffraction analysis was conducted to confirm the structure of compound .

View Article and Find Full Text PDF

Photophysical properties of condensed systems generally originate from collective contributions of all components in their stochastically fluctuated structures and are strongly influenced under strain of chromophores. To precisely identify how the stochastically fluctuated monomers synergistically manipulate the properties, we propose a statistic strategy over sufficient ab initio molecular dynamics (AIMD) samplings and for the first time uncover that synergistic oscillatory twisting (SOT) of neighboring under-strain monomers manipulates the bifunction of rubrene crystal.  The under-strain trunk SOT can regulate both singlet fission (SF) and triplet-triplet annihilation (TTA), enabling their coexistence and dominance switching by dynamically modulating the matching of excitation energies.

View Article and Find Full Text PDF

Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass.

Nano Lett

January 2025

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!