Background: Nonconvulsive status epilepticus (NCSE) is a frequent disorder in neurocritical care and diagnosing it can be challenging. NCSE patients often show altered pupil function, but nature and extent may vary. Infrared pupillometry allows detection of subtle changes of pupil function. The neurological pupil index (NPi) is considered a surrogate marker of global pupil function which is supposed to be independent of absolute parameters such as the pupil diameter.
Objective: Cross-sectional observational study to assess whether NPi is altered in NCSE.
Methods: 128 consecutive adult emergency patients who had experienced a suspected seizure, have not reached their prior functional level regarding level of consciousness, mental status or focal deficits, had no obvious clinical signs of status epilepticus and had an EEG indication as determined by the treating clinician for exclusion of NCSE were examined by routine EEG and pupillometry. Exclusion criteria were ocular comorbidity (n = 21) and poor EEG quality (n = 4). Pupillometry was performed once directly before the beginning of EEG recording. NCSE diagnosis (no NCSE, possible NCSE and confirmed NCSE) was established according to Salzburg consensus criteria blinded to pupillometry results. Group comparison was performed for right NPi, left NPi, lowest NPi of both sides (minNPi) and the absolute difference of both sides (diffNPi) applying non-parametric testing. In post-hoc analysis, receiver operating characteristics (ROC) of NCSE diagnosis (combined confirmed NCSE and possible NCSE) were performed for minNPi and diffNPi.
Results: From 103 patients included in the final analysis, 5 (4.9%) had confirmed NCSE, 7 (6.8%) had possible NCSE. Right NPi (p = 0.002), left NPi (p < 0.001) and minNPi (p < 0.001) were significantly lower in "confirmed NCSE" and "possible NCSE" compared to "no NCSE"; diffNPi was significantly higher in "confirmed NCSE" and "possible NCSE" compared to "no NCSE" (p < 0.001). There was no significant difference of minNPi and diffNPi between "confirmed NCSE" and "possible NCSE". ROC analysis showed an optimal cut-off of minNPi for NCSE diagnosis of 4.0 (AUC = 0.93, 95% CI 0.86-0.99). Optimal ROC analysis cut-off of diffNPi for NCSE diagnosis was 0.2 (AUC = 0.89, 95% CI 0.80-0.99).
Conclusions: NPi was significantly reduced and the difference between left and right NPi was significantly higher in confirmed NCSE. An NPi < 4.0 on either side as well as an NPi difference of both sides > 0.2 may be potential indicators of NCSE. Infrared pupillometry may be a helpful diagnostic tool in the assessment of NCSE and should be studied further in larger populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12028-020-01149-1 | DOI Listing |
MethodsX
June 2025
Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Road, Milwaukee, WI, 53226.
Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.
View Article and Find Full Text PDFBackground: Early-onset Alzheimer's disease (EOAD) associated with amyloid precursor protein (APP) duplications or presenilin (PSEN) variants increases risk of seizures. Targeting epileptiform activity with antiseizure medicine (ASM) administration to AD patients may beneficially attenuate cognitive decline (Vossel et al, JAMA Neurology 2021). However, whether mechanistically distinct ASMs differentially suppress seizures in discrete EOAD models is understudied (Lehmann et al, Neurochem Res 2021).
View Article and Find Full Text PDFExp Anim
January 2025
Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia.
Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!