Integrins are stress-sensing proteins expressed on the surface of cells. They regulate bidirectional signal transduction during cell-cell or cell-extracellular matrix (ECM) contacts. Integrins link the ECM with the cytoplasm through interaction with their ligands. Biophysically, such interactions can be understood as changes in stress fields at specific integrin stress-sensing domains, such as the MIDAS and ADMIDAS domains. Stress changes between ligands and cytoskeletal structures are involved in cancer cell growth by altering signal transduction pathways dependent on integrin activation. In this chapter, previous results regarding integrin activation and tumor cell growth using nanoparticles (NPs) of different materials, sizes and shapes are placed within a framework of polarized NPs in the ECM by external electromagnetic fields, in which the synergic action between polarized NPs and electromagnetic fields activates the integrins. Small size NPs activate integrins via the polar component of the dipole force between NPs and integrin sensing stress sites, while large size NPs exercise a similar action via the radial component. A quantum electrodynamic model also accounts for ECM overstressing by electromagnetic mode trapping between coherent symmetric and antisymmetric quantum states.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0962-0_12DOI Listing

Publication Analysis

Top Keywords

integrin activation
12
electromagnetic fields
12
activation tumor
8
signal transduction
8
cell growth
8
polarized nps
8
size nps
8
nps
6
integrin
5
dynamics physics
4

Similar Publications

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization.

Biomaterials

January 2025

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:

The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.

View Article and Find Full Text PDF

Redox regulation of focal adhesions.

Redox Biol

January 2025

Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark. Electronic address:

Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Triiodothyronine (T3) increases the expression of the amphiregulin (AREG) oncogene by activating extranuclear pathways in MCF-7 breast cancer cells.

Arch Endocrinol Metab

January 2025

Universidade Estadual Paulista Faculdade de Medicina de Botucatu BotucatuSP Brasil Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil.

Objective: Considering that the αvβ3 integrin plays an important role in tumor metastasis, this study investigated the involvement of these pathways in mediating the triiodothyronine (T3) effects on amphiregulin () expression.

Materials And Methods: We treated MCF-7 cells with T3 (10 nM) for 1 hour in the presence or absence of inhibitors for αvβ3 integrin (RGD peptide), MAPK (PD98059), PI3K (LY294002), and protein synthesis (cycloheximide [CHX]). A control group (C) received no T3 or inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!