A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism. | LitMetric

Abnormal excessive production and deposition of β-amyloid (Aβ) peptides in selectively susceptible brain regions are thought to be a key pathogenic mechanism underlying Alzheimer's disease (AD), resulting in memory deficits and cognitive impairment. Genistein is a phytoestrogen with great promise for counteracting diverse Aβ-induced insults, including oxidative stress and mitochondrial dysfunction. However, the exact molecular mechanism or mechanisms underlying the neuroprotective effects of genistein against Aβ-induced insults are largely uncharacterized. To further elucidate the possible mechanism(s) underlying these protective effects, we investigated the neuroprotective effects of genistein against Aβ-induced oxidative stress mediated by orchestrating α7 nicotinic acetylcholine receptor (α7nAChR) signaling in rat primary hippocampal neurons. Genistein significantly increased cell viability, reduced the number of apoptotic cells, decreased accumulation of reactive oxygen species (ROS), decreased contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), upregulated BCL-2 expression, and suppressed Caspase-3 activity occurring after treatment with 25 μM Aβ25-35. Simultaneously, genistein markedly inhibited the decreases in α7nAChR mRNA and protein expression in cells treated with Aβ25-35. In addition, α7nAChR signaling was intimately involved in the genistein-mediated activation of phosphatidylinositol 3-kinase (PI3K)/Akt and Nrf2/keap1 signaling. Thus, α7nAChR activity together with the PI3K/Akt/Nrf2 signaling cascade likely orchestrates the molecular mechanism underlying the neuroprotective effects of genistein against Aβ-induced oxidative injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-020-01009-8DOI Listing

Publication Analysis

Top Keywords

effects genistein
16
oxidative stress
12
neuroprotective effects
12
genistein aβ-induced
12
protective effects
8
mechanism underlying
8
aβ-induced insults
8
molecular mechanism
8
mechanisms underlying
8
underlying neuroprotective
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!