Activation of the Keap1-Nrf2 pathway by specioside and the -butanol extract from the inner bark of (Bertol) DC.

F1000Res

Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.

Published: April 2021

A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the -butanol extract obtained from the inner bark of (Bertol) DC and specioside isolated from this extract. The antioxidant activity of the extract and specioside isolated from the inner bark of were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes and was evaluated by real-time PCR. The protective effects against H O -induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Both the -butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the -butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of and . The -butanol extract from the inner bark of and specioside produced protective effects against H O -induced oxidative stress in HepG2 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653643PMC
http://dx.doi.org/10.12688/f1000research.26901.3DOI Listing

Publication Analysis

Top Keywords

-butanol extract
20
inner bark
16
keap1-nrf2 pathway
12
extract inner
12
extract specioside
12
hepg2 cells
12
hours exposure
12
extract
10
activation keap1-nrf2
8
specioside
8

Similar Publications

Development and validation of a rapid and accurate ultra performance liquid chromatography-photodiode array method for concurrent quantification of thirty-two polyphenols in edible fruit of Cordia myxa Linn.

J Chromatogr A

December 2024

Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh), 176061, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India. Electronic address:

The aim of current work was to develop a novel, simple, sensitive, and reliable method for screening and quantification of thirty-two polyphenol compounds from Cordia myxa (C. myxa) using Ultra Performance Liquid Chromatography Photodiode Array detector (UPLC-PDA). With the help of the quaternary solvent manager and a comparison study of seven different columns packed with silica particles that are less than two micron thick (1.

View Article and Find Full Text PDF

Separation of Three Polar Compounds with Similar Polarities from Swertia mussotii by a Combination of Two Counter-Current Chromatography Modes.

J Chromatogr Sci

January 2025

Characteristic Biology Resources Research Center, Northwest Institute of Plateau Biology, Chinese Academy of Science, No. 23, Xinning Road, Chengxi District, Xining, Qinghai 810001, P. R. China.

Separation of polar compounds especially with similar polarities is challenging. In the present study, three polar compounds with similar polarities, including gentiopicroside, sweroside and mangiferin, have been successfully separated from Swertia mussotii by a combination of two counter-current chromatography modes. With the selected solvent system of ethyl acetate/n-butanol/water (8/2/10, v/v), a continuous injection mode was firstly employed.

View Article and Find Full Text PDF

Insights into bioactivity guided chemical profiling of Mill. fruits wild-growing in Montenegro.

Heliyon

January 2025

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia.

Jujube ( Mill.) is a highly abundant wild-growing plant in Montenegro. It has been utilized since old times for various bioactive properties by the natives, however its detailed chemical characterization, antimicrobial, antioxidant and cytotoxic potential have not been extensively explored.

View Article and Find Full Text PDF
Article Synopsis
  • Pseudomonas aeruginosa is problematic in healthcare due to its high antibiotic resistance, highlighting the need for new antimicrobial solutions.
  • A study focused on isolating a new bacteriocin from Enterococcus faecium found in stool samples, which showed promise against multidrug-resistant P. aeruginosa.
  • The purified bacteriocin, enterocin GH, demonstrated significant antibacterial and antibiofilm activity against P. aeruginosa, outperforming controls in laboratory tests.
View Article and Find Full Text PDF

In this manuscript, the effects of two extracts from were tested: (a) an extract titrated to 49.7% of andrographolide and obtained from leaves of the plant: (b) the pure andrographolide titrated to 99%. The extracts were dissolved in 1-butanol and tested on tumor lines (MCF7 and SH-SY5Y) and the non-tumor line (Huvec) to understand the effects on cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!