Aims: To develop a tool that can annotate subcellular localization of human proteins.
Background: With the progression of high throughput human proteomics projects, an enormous amount of protein sequence data has been discovered in the recent past. All these raw sequence data require precise mapping and annotation for their respective biological role and functional attributes. The functional characteristics of protein molecules are highly dependent on the subcellular localization/compartment. Therefore, a fully automated and reliable protein subcellular localization prediction system would be very useful for current proteomic research.
Objective: To develop a machine learning-based predictive model that can annotate the subcellular localization of human proteins with high accuracy and precision.
Methods: In this study, we used the PSI-CD-HIT homology criterion and utilized the sequence-based features of protein sequences to develop a powerful subcellular localization predictive model. The dataset used to train the HumDLoc model was extracted from a reliable data source, Uniprot knowledge base, which helps the model to generalize on the unseen dataset.
Results: The proposed model, HumDLoc, was compared with two of the most widely used techniques: CELLO and DeepLoc, and other machine learning-based tools. The result demonstrated promising predictive performance of HumDLoc model based on various machine learning parameters such as accuracy (≥97.00%), precision (≥0.86), recall (≥0.89), MCC score (≥0.86), ROC curve (0.98 square unit), and precision-recall curve (0.93 square unit).
Conclusion: In conclusion, HumDLoc was able to outperform several alternative tools for correctly predicting subcellular localization of human proteins. The HumDLoc has been hosted as a web-based tool at https://bioserver.iiita.ac.in/HumDLoc/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604748 | PMC |
http://dx.doi.org/10.2174/1389202921999200528160534 | DOI Listing |
Plant Mol Biol
January 2025
School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.
View Article and Find Full Text PDFmBio
January 2025
Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay.
Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.
View Article and Find Full Text PDFJ Trop Med
January 2025
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.
Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.
View Article and Find Full Text PDFCell Death Discov
January 2025
Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!