The malaria parasite Plasmodium obligatorily infects and replicates inside hepatocytes surrounded by a parasitophorous vacuole membrane (PVM), which is decorated by the host-cell derived autophagy protein LC3. We have previously shown that the parasite-derived, PVM-resident protein UIS3 sequesters LC3 to avoid parasite elimination by autophagy from hepatocytes. Here we show that a small molecule capable of disrupting this interaction triggers parasite elimination in a host cell autophagy-dependent manner. Molecular docking analysis of more than 20 million compounds combined with a phenotypic screen identified one molecule, C4 (4-{[4-(4-{5-[3-(trifluoromethyl) phenyl]-1,2,4-oxadiazol-3-yl}benzyl)piperazino]carbonyl}benzonitrile), capable of impairing infection. Using biophysical assays, we established that this impairment is due to the ability of C4 to disrupt UIS3-LC3 interaction, thus inhibiting the parasite's ability to evade the host autophagy response. C4 impacts infection in autophagy-sufficient cells without harming the normal autophagy pathway of the host cell. This study, by revealing the disruption of a critical host-parasite interaction without affecting the host's normal function, uncovers an efficient anti-malarial strategy to prevent this deadly disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677311 | PMC |
http://dx.doi.org/10.1038/s42003-020-01422-1 | DOI Listing |
Malar J
January 2025
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.
View Article and Find Full Text PDFMalar J
January 2025
PMI Defeat Malaria Activity, University Research Co., LLC, Yangon, Burma.
Background: In Myanmar, progress towards malaria elimination has stagnated in some areas requiring deployment of new tools and approaches to accelerate malaria elimination. While there is evidence that networks of community-based malaria workers and insecticide-treated nets (ITNs) can reduce malaria transmission in a variety of settings, evidence for the effectiveness of other interventions, such as topical repellents, is limited. Since malaria transmission in Myanmar occurs outdoors, mainly among forest-goers, this study tested the effectiveness of topical repellents in combination with supplemental ITN distribution and strengthened networks of malaria workers.
View Article and Find Full Text PDFCells
January 2025
Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary.
Parasitoid elimination in involves special hemocytes, called lamellocytes, which encapsulate the eggs or larvae of the parasitoid wasps. The capsules are melanized, and metabolites of the melanization reaction may play a potential role in parasitoid killing. We have observed a variation in the melanization capacity of different, commonly used strains, such as Canton-S, Oregon-R, and BL5905, BL6326.
View Article and Find Full Text PDFVaccine
January 2025
Department of Global Health, George Washington University, Washington, D.C., USA. Electronic address:
Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!