The photocatalytic activity of TiO anodes was enhanced by synthesizing Ru-doped Ti|TiO nanotube arrays. Such photoanodes were fabricated via Ti anodization followed by Ru impregnation and annealing. The X-ray diffractograms revealed that anatase was the main TiO phase, while rutile was slightly present in all samples. Scanning electron microscopy evidenced a uniform morphology in all samples, with nanotube diameter ranging from 60 to 120 nm. The bias potential for the photoelectrochemical (PEC) treatment was selected from the electrochemical characterization of each electrode, made via linear sweep voltammetry. All the Ru-doped TiO nanotube array photoanodes showed a peak photocurrent (PP) and a saturation photocurrent (SP) upon their illumination with UV or visible light. In contrast, the undoped TiO nanotubes only showed the SP, which was higher than that reached with the Ru-doped photoanodes using UV light. An exception was the Ru(0.15 wt%)-doped TiO, whose SP was comparable under visible light. Using that anode, the activity enhancement during the PEC treatment of a Terasil Blue dye solution at E(PP) was much higher than that attained at E(SP). The percentage of color removal at 120 min with the Ru(0.15 wt%)-doped TiO was 98% and 55% in PEC with UV and visible light, respectively, being much greater than 82% and 28% achieved in photocatalysis. The moderate visible-light photoactivity of the Ru-doped TiO nanotube arrays suggests their convenience to work under solar PEC conditions, aiming at using a large portion of the solar spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128925 | DOI Listing |
Dalton Trans
January 2025
The Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey.
The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Yanbian University, Yanji, 133002, Jilin, China. Electronic address:
Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
This study presents the preparation, characterization, and application of a novel Multi-walled carbon nanotubes/TiO/chitosan (MWCNT/TiO/CS) nanocomposite, prepared using a hydrothermal method, for the removal of malachite green (MG) dye from aqueous solutions. Adsorption studies revealed optimal dye removal within 15 min of adsorption equilibrium time, with maximum removal efficiency of 98.53 % at pH 7.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:
The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Research in Engineering Surface Technology (CREST), Technological University Dublin City Campus, Kevin Street Dublin 8 Ireland
The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!