A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pore Size Distribution and Fractal Characteristics of the Nanopore Structure in Organic-Rich Shales Using the Neimark-Kiselev Fractal Approach. | LitMetric

Pore Size Distribution and Fractal Characteristics of the Nanopore Structure in Organic-Rich Shales Using the Neimark-Kiselev Fractal Approach.

J Nanosci Nanotechnol

Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Published: January 2021

Shale gas has been playing an increasingly important role in meeting global energy demands. The heterogeneity of the pore structure in organic-rich shales greatly affects the adsorption, desorption, diffusion and flow of gas. The pore size distribution (PSD) is a key parameter of the heterogeneity of the shale pore structure. In this study, the Neimark-Kiselev (N-K) fractal approach was applied to investigate the heterogeneity in the PSD of the lower Silurian organic-rich shales in South China using low-pressure N₂ adsorption, total organic carbon (TOC) content, maturity analysis, X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) measurements. The results show that (1) the fractal dimension obtained by N-K theory better represents the heterogeneity of the PSD in shale at an approximately 1-100 nm scale. The values range from 2.3801 to 2.9915, with a mean of 2.753. The stronger the PSD heterogeneity is, the higher the value in shale is. (2) The clay-rich samples display multimodal patterns at pore sizes greater than 20 nm, which strongly effect the PSD heterogeneity. Quartz-rich samples display major peaks at less than or equal to a 10 nm pore size, with a smaller effect on the PSD heterogeneity in most cases. In other brittle mineral-rich samples, there are no obvious major peaks, and a weak heterogeneity of the PSDs is displayed. (3) A greater TOC content, maturity, clay content and pore size can cause stronger heterogeneity of the PSD and higher fractal dimensions in the shale samples. This study helps to understand and compare the PSD and fractal characteristics from different samples and provides important theoretical guidance and a scientific basis for the exploration and development of shale gas resources.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.18475DOI Listing

Publication Analysis

Top Keywords

pore size
16
organic-rich shales
12
heterogeneity psd
12
psd heterogeneity
12
heterogeneity
9
size distribution
8
fractal characteristics
8
structure organic-rich
8
fractal approach
8
shale gas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!