Multi-targeted gene silencing strategies inhibit replication of Canine morbillivirus.

BMC Vet Res

Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.

Published: November 2020

Background: Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV.

Results: In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication.

Conclusions: We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676405PMC
http://dx.doi.org/10.1186/s12917-020-02671-2DOI Listing

Publication Analysis

Top Keywords

cdv replication
12
cdv
11
gene silencing
8
recombinant adenovirus-expressing
8
shrnas
6
gene
5
multi-targeted gene
4
silencing strategies
4
strategies inhibit
4
replication
4

Similar Publications

Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication.

Int J Mol Sci

December 2024

Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China.

Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood.

View Article and Find Full Text PDF

Morbillivirus Canis Infection Induces Activation of Three Branches of Unfolded Protein Response, MAPK and Apoptosis.

Viruses

November 2024

Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina.

, commonly named Canine distemper virus (CDV), is a morbillivirus implicated in several signs in the family. In dogs (), common signs of infection include conjunctivitis, digital hyperkeratosis and neuropathologies. Even with vaccination, the canine distemper disease persists worldwide so the molecular pathways implicated in the infection processes have been an interesting and promising area in new therapeutic drugs research in recent years.

View Article and Find Full Text PDF

PrimPol-mediated repriming elicits gap-filling by template switching and promotes cellular tolerance to cidofovir.

DNA Repair (Amst)

November 2024

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan. Electronic address:

A nucleoside analog, Cidofovir (CDV), is used for the treatment of viral diseases such as cytomegalovirus retinitis and herpes virus infection. CDV converts to its active diphosphate metabolite (CDVpp) through cellular kinases and acts as a competitive inhibitor for viral polymerase thereby interfering with viral replication. However, the effect of this drug on the replication of healthy host cells and the mechanisms involved in the cellular tolerance to CDV are yet to be fully understood.

View Article and Find Full Text PDF

Reticulophagy and viral infection.

Autophagy

January 2025

Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.

Article Synopsis
  • All viruses rely on the host's cellular machinery to produce their proteins, specifically utilizing the endoplasmic reticulum (ER) in eukaryotic cells for this process.
  • Viruses can manipulate the ER to create structures for viral production while avoiding detection by the host's immune system.
  • Reticulophagy, a process that degrades ER components, acts as an antiviral defense mechanism (termed "xERophagy"), but viruses have also evolved ways to counteract this defense to enhance their replication.
View Article and Find Full Text PDF

Newcastle disease virus, a member of the Paramyxoviridae family, causes significant economic losses in poultry worldwide. To identify novel antiviral agents against NDV, 36 canthin-6-one analogs were evaluated in this study. Our data showed that 8 compounds exhibited excellent inhibitory effects on NDV replication with IC values in the range of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!