AI Article Synopsis

  • The study focuses on creating segmented polyurethanes with catechol groups to enhance their properties.
  • By adding a new catechol diol into the soft segment, the polyurethane's mechanical strength significantly increased compared to when it was in the hard segment.
  • The research also discovered that protecting the catechol ring during synthesis led to the highest recorded strength for these materials, indicating potential for various applications due to improved performance.

Article Abstract

In the present work, the synthesis of segmented polyurethanes functionalized with catechol moieties within the hard or the soft segment is presented. For this purpose, a synthetic route of a new catechol diol was designed. The direct insertion of this catechol-free derivative into the rigid phase led to segmented polyurethanes with low performance (σ ≈ 4.5 MPa). Nevertheless, when the derivative was formally located within the soft segment, the mechanical properties of the corresponding functionalized polyurethane improved considerably (σ ≈ 16.3 MPa), owing to a significant increase in the degree of polymerization. It is proposed that this difference in reactivity could probably be attributed to a hampering effect of this catecholic ring during the polyaddition reaction. To corroborate this hypothesis, a protection of the aromatic ring was carried out, blocking the hampering effect and avoiding secondary reactions. The polyurethane bearing the protected catechol showed the highest molecular weight and the highest stress at break described to date (σ ≈ 66.1 MPa) for these kind of catechol-functionalized polyurethanes. Therefore, this new approach allows for the obtention of high-performance polyurethane films and can be applied in different sectors, benefiting from the molecular adhesion introduced by the catechol ring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698539PMC
http://dx.doi.org/10.3390/polym12112727DOI Listing

Publication Analysis

Top Keywords

polyurethane films
8
segmented polyurethanes
8
soft segment
8
design synthesis
4
synthesis bio-inspired
4
polyurethane
4
bio-inspired polyurethane
4
films high
4
high performance
4
performance work
4

Similar Publications

A Shape-Memory and Durable Transparent Polyacrylate Film Integrated by Soft-Rigid Chains.

Chemistry

December 2024

Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science,, CHINA.

Flexible film in display requires multi-functional integration, such as stretchability, flexibility, abrasion resistance, transparency, and shape memory. In this paper, a reasonable design strategy of flexible polyacrylate (PA) film with high transparency, shape memory, excellent abrasion resistance and foldability is presented. The PA films are prepared by free radical polymerization of vinyl-terminated polyurethane (PU) prepolymer as a cross-linking agent and acrylate monomers in ultraviolet (UV) light.

View Article and Find Full Text PDF

Tough Polyurethane Hydrogels with a Multiple Hydrogen-Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water-Induced Microphase Separation.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.

View Article and Find Full Text PDF

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

This study aimed to investigate the degradation of dry biopotential electrodes using the anodic stripping voltammetry (ASV) technique. The electrodes were based on Ti-Cu thin films deposited on different polymeric substrates (polyurethane, polylactic acid, and cellulose) by Direct Current (DC) magnetron sputtering. TiCu thin films (chemical composition of 25.

View Article and Find Full Text PDF

Herein, composite films were produced by incorporating different amounts (1, 3, 5, and 7%) of barium titanate nanoparticles into the thermoplastic polyurethane matrix using a solution casting method. This study examined the impact of the presence and concentration of a barium titanate additive on morphologic properties, mechanical performance, thermal stability, solar behavior, and wettability of produced film samples. The films were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscope, ultraviolet-visible near-infrared spectrophotometer, water contact angle, and tensile strength measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!