Canavanine Increases the Content of Phenolic Compounds in Tomato ( L.) Roots.

Plants (Basel)

Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.

Published: November 2020

AI Article Synopsis

  • - Canavanine (CAN) is an amino acid that disrupts normal cellular processes by substituting for arginine, leading to reduced nitric oxide levels and increased oxidative stress in tomato plants.
  • - In studies with tomato seedlings, CAN treatment resulted in stunted root growth but increased the overall concentration of phenolic compounds (PCs), particularly at higher doses (50 µM).
  • - The presence of CAN enhanced flavonoid content in root tips and altered the activity and expression of enzymes related to PC metabolism, suggesting that PCs play a vital role in the plant's antioxidant defense against CAN-induced oxidative stress.

Article Abstract

Canavanine (CAN) is a nonproteinogenic amino acid, and its toxicity comes from its utilization instead of arginine in many cellular processes. As presented in previous experiments, supplementation of tomato ( L.) with CAN led to decreased nitric oxide (NO) level and induced secondary oxidative stress. CAN improved total antioxidant capacity in roots, with parallel inhibition of enzymatic antioxidants. The aim of this work was to determine how CAN-dependent limitation of NO emission and reactive oxygen species overproduction impact content, localization, and metabolism of phenolic compounds (PCs) in tomato roots. Tomato seedlings were fed with CAN (10 and 50 µM) for 24 or 72 h. Inhibition of root growth due to CAN supplementation correlated with increased concentration of total PCs; CAN (50 µM) led to the homogeneous accumulation of PCs all over the roots. CAN increased also flavonoids content in root tips. The activity of polyphenol oxidases and phenylalanine ammonia-lyase increased only after prolonged treatment with 50 µM CAN, while expressions of genes encoding these enzymes were modified variously, irrespectively of CAN dosage and duration of the culture. PCs act as the important elements of the cellular antioxidant system under oxidative stress induced by CAN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698470PMC
http://dx.doi.org/10.3390/plants9111595DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
8
tomato roots
8
oxidative stress
8
canavanine increases
4
increases content
4
content phenolic
4
tomato
4
compounds tomato
4
roots
4
roots canavanine
4

Similar Publications

Comment on "Stability and degradation mechanism of (-)-epicatechin in thermal processing".

Food Chem

January 2025

Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:

Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.

View Article and Find Full Text PDF

Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape Marc.

Food Chem

December 2024

Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand. Electronic address:

Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.

View Article and Find Full Text PDF

Efficacy of silver nanoparticles (NPs) and fungal elicitors on the curcuminoid production in Curcuma longa L.

Plant Physiol Biochem

January 2025

Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.

View Article and Find Full Text PDF

Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses.

Plant Physiol Biochem

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:

The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.

View Article and Find Full Text PDF

Honey is a valuable natural product with antioxidant properties, and its quality is influenced by various factors, including botanical origin and biofortification. Pine bud extracts, known for their antioxidant capacity, were explored to enhance the properties of acacia and polyflower honey. This study aimed to investigate the effect of pine bud extracts at different maturation stages on the moisture content, dry matter, antioxidant activity, and total phenolic content (TPC) of acacia and polyflower honey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!