Efficient and Low Cytotoxicity Gene Carriers Based on Amine-Functionalized Polyvinylpyrrolidone.

Polymers (Basel)

Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.

Published: November 2020

Non-viral vectors are a safety tool for gene therapy to deliver therapeutic genes. Among the different non-viral vectors, polyvinylpyrrolidone (PVP), a well-known hydrosoluble, neutral, and non-toxic polymer, satisfies the requirements and becomes a suitable candidate for gene delivery. In this study, we describe the preparation of polyvinylpyrrolidones decorated with pyrrolidine, piperidine, and piperazine groups, and evaluate them in vitro as non-viral gene carriers. The properties of these new systems are compared with those of hyperbranched polyethyleneimine (PEI) used as a positive control. Their ability to complex DNA at different N/P molar ratios, from 1:1 up to 10:1, was studied through agarose gel electrophoresis and dynamic light scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro with murine fibroblast (Swiss 3T3) as non-viral gene carriers, using luciferase as the reporter gene and a calcein cytocompatibility assay. All the copolymers condensed DNA to a particle average size between 100-400 nm when used at N/P ratios of 4:1 or higher. The copolymers with piperidine groups showed higher transfection efficiency than the pyrrolidine and piperazine modified copolymers, and even higher than the positive control of PEI at N/P ratios of 4:1 or higher. All the synthesized polyplexes from an aminated PVP displayed a general tendency of high cytocompatibility (75-95%) in comparison with the positive control PEI (55%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698542PMC
http://dx.doi.org/10.3390/polym12112724DOI Listing

Publication Analysis

Top Keywords

gene carriers
12
positive control
12
non-viral vectors
8
non-viral gene
8
n/p ratios
8
ratios higher
8
control pei
8
gene
6
efficient low
4
low cytotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!