Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have used video imaging and interferometric techniques to investigate the dynamics of spreading of drops of ^{4}He on a solid surface for temperatures ranging from 5.2 K (near the critical point) to 2.2 K (near T_{λ}). After an initial transient, the drops become pancake-shaped with a radius that grows as R(t)≈t^{α}, with α=0.149±0.002. The drops eventually begin to shrink due to evaporation driven by gravitational and curvature effects, which limits their lifetime to about 1000 s. Although helium completely wets the substrate, and the spreading takes place over a pre-existing adsorbed film, a distinct contact line with a contact angle of order one degree is visible throughout this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.043105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!