The hydrodynamics of two oscillating foils in side-by-side configuration is numerically investigated for in-phase and out-of-phase pitching at Reynolds number of 4000 and Strouhal numbers of St=0.25-0.5. The effects of phase difference (in-phase and out-of-phase) and Strouhal number on symmetric attributes of the wake and unsteady propulsive performance of the foils are studied in detail. At lower Strouhal numbers, there is a quasisteady performance in both thrust generation and power consumption, which coincides with persistence of the wake symmetry. As Strouhal number increases, however, in-phase and out-of-phase pitching display unsteady cycle-averaged behavior with very different wake characteristics. The asymmetric wake of in-phase pitching foils at high Strouhal numbers transitions to a quasisymmetric wake, when an extensive interaction between the two vortex streets is observed in the wake. This coincides with an improvement on the propulsive performance of the foils. In contrast, the symmetric wake of the out-of-phase pitching foils at a high Strouhal number transitions to an asymmetric wake. The adverse effect of this transition is only observed on the propulsive performance of one foil while the other exploits the wake towards a better performance. The collective performance of the the out-of-phase pitching system, however, remains unchanged. There is also a strong correlation between the wake symmetric characteristics and total nonzero side-force production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.043104 | DOI Listing |
Front Comput Neurosci
December 2024
Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany.
We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state.
View Article and Find Full Text PDFJ Belg Soc Radiol
December 2024
Faculty of Medicine, Departments of Internal Medicine, İnönü University, Turkey.
This study aims to assess the performances of T1‑weighted (T1W) and T2‑weighted (T2W) Dixon sequences as replacements for the standard magnetic resonance imaging (MRI) protocol for diagnosing active and chronic sacroiliitis. This single‑centre, prospective study included 107 patients who underwent 3 Tesla MRIs. The patients with inflammatory low‑back pain (aged 18-50 years) were included.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2024
AVT - Biochemical Engineering, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany.
Culture broth with secreted macromolecules and culture broth of filamentous fungi showing disperse growth exhibit elevated viscosity, usually with shear-thinning flow behavior. High viscosity, however, poses a serious challenge in the production and research of these compounds and organisms. It commonly causes insufficient mixing and oxygen transfer in large- and small-scale bioreactors.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Physical Geography and Ecosystem Science Lund University, 22100, Sweden. Electronic address:
The Baltic Sea highly susceptible to the proliferation of Phytoplankton blooms. Present work examines the long-term trend and spatio-temporal variability of satellite derived chlorophyll concentration (Chl a) in the Baltic Sea during the period 2004-2021. Furthermore, the influence of water quality and meteorological parameters on Baltic Sea primary productivity has been analyzed using robust Generalized Additive Models (GAM) and Granger Causality statistical test.
View Article and Find Full Text PDFPLoS Comput Biol
October 2024
Department of Pharmacology, University of California San Diego, San Diego, California, United States of America.
The nanoscale organization of enzymes associated with the dynamics of second messengers is critical for ensuring compartmentation and localization of signaling molecules in cells. Specifically, the spatiotemporal orchestration of cAMP and Ca2+ oscillations is critical for many cellular functions. Previous experimental studies have shown that the formation of nanodomains of A-kinase anchoring protein 79/150 (AKAP150) and adenylyl cyclase 8 (AC8) on the surface of pancreatic MIN6 β cells modulates the phase of Ca2+-cAMP oscillations from out-of-phase to in-phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!