A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. IV. Case of modes n and m. | LitMetric

Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. IV. Case of modes n and m.

Phys Rev E

Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully, France.

Published: October 2020

This paper is the conclusion of work done in our previous papers [A. A. Doinikov et al., Phys. Rev. E 100, 033104 (2019)10.1103/PhysRevE.100.033104; Phys. Rev. E 100, 033105 (2019)10.1103/PhysRevE.100.033105]. The overall aim of the study is to develop a theory for modeling the velocity field of acoustic microstreaming produced by nonspherical oscillations of a gas bubble. In our previous papers, general equations were derived to describe the velocity field of acoustic microstreaming produced by modes m and n of bubble oscillations. Particular cases of mode interaction were derived, such as the 0-n, 1-1, 1-m, and n-n interactions. Here the general case of interaction between modes n and m, n>m, is solved analytically. Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes are assumed to be known and serve as input data for the calculation of the velocity field of microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration depth. The n-m interaction results in specific streaming patterns: At large distance from the bubble interface the pattern exhibits 2|n-m| lobes, while 2min(m,n) lobes exist in the bubble vicinity. The spatial organization of the recirculation zones is unique for the interaction of two distinct nonspherical modes and therefore appears as a signature of the n-m interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.043103DOI Listing

Publication Analysis

Top Keywords

acoustic microstreaming
12
microstreaming produced
12
velocity field
12
produced nonspherical
8
nonspherical oscillations
8
oscillations gas
8
gas bubble
8
previous papers
8
phys rev
8
rev 100
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!