Current treatments for antibody-mediated autoimmunity are associated with lack of specificity, leading to immunosuppressive effects. To overcome this limitation, we have developed a class of antibody-based therapeutics for the treatment of autoimmunity involving antibodies that recognize the autoantigen, myelin oligodendrocyte glycoprotein (MOG). These agents ("Seldegs," for selective degradation) selectively eliminate antigen (MOG)-specific antibodies without affecting the levels of antibodies of other specificities. Seldeg treatment of mice during antibody-mediated exacerbation of experimental autoimmune encephalomyelitis by patient-derived MOG-specific antibodies results in disease amelioration. Consistent with their therapeutic effects, Seldegs deliver their targeted antibodies to Kupffer and liver sinusoidal endothelial cells that are known to have tolerogenic effects. Our results show that Seldegs can ameliorate disease mediated by MOG-specific antibodies and indicate that this approach also has the potential to treat other autoimmune diseases where the specific clearance of antibodies is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934575 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2020.11.017 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
September 2024
From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA.
At one time considered a possible form of neuromyelitis optica (NMO) spectrum disorder (NMOSD), it is now accepted that myelin oligodendrocyte glycoprotein (MOG) antibody (Ab)-associated disorder (MOGAD) is a distinct entity from either NMO or multiple sclerosis (MS) and represents a broad spectrum of clinical phenotypes. Whereas Abs targeting aquaporin-4 (AQP4) in NMO are pathogenic, the extent that anti-MOG Abs contribute to CNS damage in MOGAD is unclear. Both AQP4-specific Abs in NMO and MOG-specific Abs in MOGAD are predominantly IgG1, a T cell-dependent immunoglobulin (Ig) subclass.
View Article and Find Full Text PDFJ Int Med Res
March 2024
Department of Neurology, Hengshui People's Hospital, Hengshui, China.
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) constitutes a group of autoimmune neuroinflammatory conditions that are characterized by positive serum MOG-immunoglobulin G antibodies. The relationship between MOGAD and immune factors remains unclear. Herein, we report a man in his early 30s who initially presented symptoms of headache and low-grade fever persisting for 20 days.
View Article and Find Full Text PDFBMC Neurosci
March 2024
Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Background: Myelin oligodendrocyte glycoprotein-associated disorders (MOGAD) is an autoimmune central nervous system disease. Antigen-specific immune tolerance using nanoparticles such as Polylactic-co-glycolic acid (PLGA) have recently been used as a new therapeutic tolerization approach for CNS autoimmune diseases. We examined whether MOG conjugated with PLGA could induce MOG-specific immune tolerance in an experimental autoimmune encephalitis (EAE) mouse model.
View Article and Find Full Text PDFJ Neuroinflammation
August 2023
Novartis Institutes for Biomedical Research, Basel, Switzerland.
Background: Bruton's tyrosine kinase (BTK) is a key signaling node in B cell receptor (BCR) and Fc receptor (FcR) signaling. BTK inhibitors (BTKi) are an emerging oral treatment option for patients suffering from multiple sclerosis (MS). Remibrutinib (LOU064) is a potent, highly selective covalent BTKi with a promising preclinical and clinical profile for MS and other autoimmune or autoallergic indications.
View Article and Find Full Text PDFJAMA Neurol
September 2023
Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland.
Importance: Differential diagnosis of patients with seronegative demyelinating central nervous system (CNS) disease is challenging. In this regard, evidence suggests that immunoglobulin (Ig) A plays a role in the pathogenesis of different autoimmune diseases. Yet little is known about the presence and clinical relevance of IgA antibodies against myelin oligodendrocyte glycoprotein (MOG) in CNS demyelination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!