Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex.

Neuroscience

Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA. Electronic address:

Published: January 2021

Activation of specific neural circuits in different layers of the primate dorsolateral prefrontal cortex (DLPFC) is essential for working memory, a core cognitive function. Recurrent excitation between pyramidal neurons in middle and deep layers of the DLPFC contributes to the laminar-specific activity associated with different working memory subprocesses. Excitation between cortical pyramidal neurons is mediated by glutamatergic synapses on dendritic spines, but whether the relative abundance of spines receiving cortical inputs differs between middle and deep cortical layers in human DLPFC is unknown. Additionally, GABAergic inputs to spines sculpt pyramidal neuron activity. Whether dendritic spines that receive a glutamatergic input from a cortical pyramidal neuron are targeted by GABAergic interneurons in the human DLPFC is unknown. Using triple-label fluorescence confocal microscopy, we found that 1) the density of spines receiving an input from a cortical pyramidal neuron is greater in the middle than in the deep laminar zone, 2) dendritic spines dually innervated by a cortical pyramidal neuron and an interneuron are present in the human DLPFC, and 3) the density of spines dually innervated by a cortical pyramidal neuron and an interneuron is also greater in the middle than in the deep laminar zone. Ultrastructural analyses support the presence of spines that receive a cortical pyramidal neuron synapse and an interneuron synapse in human and monkey DLPFC. These data support the notion that the DLPFC middle laminar zone is particularly endowed with a microcircuit structure that supports the gating, integrating and fine-tuning of synaptic information in recurrent excitatory microcircuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770119PMC
http://dx.doi.org/10.1016/j.neuroscience.2020.10.022DOI Listing

Publication Analysis

Top Keywords

cortical pyramidal
28
pyramidal neuron
24
dendritic spines
16
middle deep
16
pyramidal neurons
12
human dlpfc
12
laminar zone
12
spines
9
cortical
9
pyramidal
9

Similar Publications

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Principles of visual cortex excitatory microcircuit organization.

Innovation (Camb)

January 2025

Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.

Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!