Behavioural categorisation reaction times (RTs) provide a useful way to link behaviour to brain representations measured with neuroimaging. In this framework, objects are assumed to be represented in a multidimensional activation space, with the distances between object representations indicating their degree of neural similarity. Faster RTs have been reported to correlate with greater distances from a classification decision boundary for animacy. Objects inherently belong to more than one category, yet it is not known whether the RT-distance relationship, and its evolution over the time-course of the neural response, is similar across different categories. Here we used magnetoencephalography (MEG) to address this question. Our stimuli included typically animate and inanimate objects, as well as more ambiguous examples (i.e., robots and toys). We conducted four semantic categorisation tasks on the same stimulus set assessing animacy, living, moving, and human-similarity concepts, and linked the categorisation RTs to MEG time-series decoding data. Our results show a sustained RT-distance relationship throughout the time course of object processing for not only animacy, but also categorisation according to human-similarity. Interestingly, this sustained RT-distance relationship was not observed for the living and moving category organisations, despite comparable classification accuracy of the MEG data across all four category organisations. Our findings show that behavioural RTs predict representational distance for an organisational principle other than animacy, however further research is needed to determine why this relationship is observed only for some category organisations and not others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2020.107687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!