Identification of a novel non-ATP-competitive protein kinase inhibitor of PGK1 from marine nature products.

Biochem Pharmacol

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China. Electronic address:

Published: January 2021

Phosphoglycerate kinase 1 (PGK1) acts as both a glycolytic enzyme and a protein kinase playing critical roles in cancer progression, thereby being regarded as an attractive therapeutic target for cancer treatment. However, no effective inhibitor of PGK1 has been reported. Here, we demonstrate that GQQ-792, a thiodiketopiperazine derivative from marine nature products, is a non-ATP-competitive inhibitor of PGK1 with the disulfide group within the structure of GQQ-792 as a key pharmacophore. The disulfide group of GQQ-792 binds to Cys379 and Cys380 of PGK1, resulting in occlusion of ATP from binding to PGK1. GQQ-792 treatment blocks hypoxic condition- and EGF stimulation-enhanced protein kinase activity of PGK1 that phosphorylates PDHK1 at T338 in glioblastoma cells; this treatment leads to decreased lactate production and glucose uptake, and subsequent apoptosis of glioblastoma cells. Animal studies reveal that GQQ-792 significantly inhibits the growth of tumor derived from glioblastoma cells. These findings underscore the potential of GQQ-792 as a promising anticancer agent and pave an avenue to further optimize the structure of GQQ-792 basing on its target molecule and pharmacophore in future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.114343DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
inhibitor pgk1
12
glioblastoma cells
12
marine nature
8
nature products
8
disulfide group
8
structure gqq-792
8
pgk1
7
gqq-792
7
identification novel
4

Similar Publications

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production.

View Article and Find Full Text PDF

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.

View Article and Find Full Text PDF

The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!