Human telomerase has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. We construct a novel magnetic targeting carbon nanocage/FeO/DNA (CNC/FeO/DNA) nanoprobe for intracellular imaging of telomerase via the signal amplification strategy catalyzed hairpin assembly (CHA) and for photodynamic-photothermal therapy of tumor cells. Telomerase primer DNA, trigger DNA, hairpin DNA1 (H1), and hairpin DNA2 (H2) were adsorbed to the surface of CNC/FeO nanoparticles (CNC/FeO NPs), and the fluorescence of (chlorin e6) Ce6 was quenched by CNC/FeO NPs. After entering the living cell through magnetic targeting, the telomerase primer DNA can be extended in the presence of highly activated telomerase, leading to the issue of trigger DNA, which can initiate the CHA cycling process followed by the amplification of the fluorescence intensity. The detection results justified that the proposed nanoprobe showed good sensitivity and selectivity for telomerase. Confocal microscopy studies indicated that such a nanoprobe can be used to detect the activity of telomerase in living cells and the fluorescence signal was stronger under the guidance of a magnetic field. We successfully employed this nanoprobe to monitor the dynamic activity of telomerase in various types of tumor cells and normal cells and to damage tumor cells by photodynamic-photothermal combination therapy, which evidenced that this is a promising biological method for early cancer diagnosis and tumor cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13925DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
telomerase
9
intracellular imaging
8
imaging telomerase
8
catalyzed hairpin
8
hairpin assembly
8
photodynamic-photothermal combination
8
combination therapy
8
therapy tumor
8
early cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!