A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impaired arterial vitamin D signaling occurs in the development of vascular calcification. | LitMetric

Conflicting data exists as to whether vitamin D receptor agonists (VDRa) are protective of arterial calcification. Confounding this, is the inherent physiological differences between human and animal experimental models and our current fragmented understanding of arterial vitamin D metabolism, their alterations in disease states and responses to VDRa's. Herein, the study aims to address these problems by leveraging frontiers in human arterial organ culture models. Human arteries were collected from a total of 24 patients (healthy controls, n = 12; end-stage CKD, n = 12). Cross-sectional and interventional studies were performed using arterial organ cultures treated with normal and calcifying (containing 5mmol/L CaCl2 and 5mmol/L β-glycerophosphate) medium, ex vivo. To assess the role of VDRa therapy, arteries were treated with either calcitriol or paricalcitol. We found that human arteries express a functionally active vitamin D system, including the VDR, 1α-hydroxylase and 24-hydroxylase (24-OHase) components and these were dysregulated in CKD arteries. VDRa therapy increased VDR expression in healthy arteries (p<0.01) but not in CKD arteries. Arterial 1α-OHase (p<0.05) and 24-OHase mRNA and protein expression were modulated differentially in healthy and CKD arteries by VDRa therapy. VDRa exposure suppressed Runx2 and MMP-9 expression in CKD arteries, however only paricalcitol suppressed MMP-2. VDRa exposure did not modulate arterial calcification in all organ culture models. However, VDRa reduced expression of senescence associated β-galactosidase (SAβG) staining in human aortic-smooth muscle cells under calcifying conditions, in vitro. In conclusion, maladaptation of arterial vitamin D signaling components occurs in CKD. VDRa exposure can exert vasculo-protective effects and seems critical for the regulation of arterial health in CKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676703PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241976PLOS

Publication Analysis

Top Keywords

arterial vitamin
8
arterial organ
8
human arteries
8
vdra therapy
8
arteries
5
impaired arterial
4
vitamin
4
vitamin signaling
4
signaling occurs
4
occurs development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!