AbstractMicrobes inhabiting multicellular organisms have complex, often subtle effects on their hosts. are commonly infected with -like bacteria, which may cause mild nutrient (choline, arginine) deficiencies. However, are there more serious ecological consequences of infection, such as effects on foraging aptitudes and risk management? We tested two alternatives: the nutrient compensation hypothesis (does nutrient deficiency induce infected gerbils to make up for the shortfall by foraging more and taking greater risks?) and (2) the lethargy hypothesis (do sick gerbils forage less, and are they compromised in their ability to detect predators or risky microhabitats?). We compared the foraging and risk management behavior of infected and noninfected gerbils. We experimentally infected gerbils with the bacteria, which allowed us to compare between noninfected, acutely infected (peak infection loads), and chronically infected (low infection loads) individuals. Our findings supported the lethargy hypothesis over the nutrient compensation hypothesis. Infected individuals incurred dramatically elevated foraging costs, including less efficient foraging, diminished "quality" of time spent vigilant, and increased owl predation. Interestingly, gerbils that were chronically infected (lower bacteria load) experienced larger ecological costs than acutely infected individuals (i.e., peak infection loads). This suggests that the debilitating effects of infection occur gradually, with a progressive decline in the quality of time gerbils allocated to foraging and managing risk. These increased long-term costs of infection demonstrate how small direct physiological costs of infection can lead to large indirect ecological costs. The indirect ecological costs of this parasite appear to be much greater than the direct physiological costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/711397 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.
View Article and Find Full Text PDFSci Rep
January 2025
Biochemistry Department, Faculty of Agriculture, Al Azhar University, Cairo, Egypt.
Glutaraldehyde (GLU) is mainly used in medicine by healthcare workers during infection control as a chemical disinfectant. It has been linked to numerous health hazards that range from asthma to irritation of the eye to contact dermatitis. Citrullus colocynthis (C.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFChem Biodivers
January 2025
East China University of Science and Technology, School of Pharmacy, 130# Meilong Road, 200237, Shanghai, CHINA.
The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release.
View Article and Find Full Text PDFVaccine
January 2025
Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Electronic address:
Tuberculosis (TB) remains a significant global health issue due to the limited efficacy of the Bacillus Calmette-Guérin (BCG) vaccine, highlighting the need for the development of an improved TB vaccine. In this study, we created a novel TB subunit vaccine consisting of TB-secreted chorismate mutase (TBCM) (Rv1885c) and a hepatitis B virus (HBV)-derived peptide (Poly6), which elicits Type I interferon responses, both with and without an alum adjuvant. We evaluated the immunogenicity, protective efficacy, and therapeutic efficacy of this vaccine candidate in an in vivo mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!