Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ and Aβ peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ fully and rapidly delivered Cu(II) to Ctr along the affinity gradient. Such delivery was only partial for the Aβ/Ctr pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c02100DOI Listing

Publication Analysis

Top Keywords

aβ peptides
24
14
peptides
8
synaptic cleft
8
aβ species
8
model peptides
8
cui
8
copper
6
ctr1
6
cuii
6

Similar Publications

The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.

View Article and Find Full Text PDF

A series of new peptides (8-25) containing different unnatural amino acids of the adamantane type (1-6), was synthesized. Possible cytotoxic activity on human cervical adenocarcinoma (HeLa), larynx carcinoma (HEp-2), colon carcinomas (HT-29, Caco-2), poorly differentiated cells from lymph node metastasis of colon carcinoma (SW-620), mammary gland adenocarcinoma (MCF-7), and melanoma (HBL) cells were tested by the MTT assay. The results were compared with the effect of methionine-enkephalin (Tyr-Gly-Gly-Phe-Met, or opioid growth factor, OGF), and its shorter N-terminal fragments.

View Article and Find Full Text PDF

A new family of cyclic opioid peptide analogues related to the 1-4 sequence of dermorphin/deltorphin (Tyr-D-Aaa2-Phe-Aaa4-NH2) has been synthesized. The synthesis of the linear precursor peptides was accomplished by the solid-phase method and ring formation was achieved via a ureido group incorporating the side chain amino functions of D-Aaa2 (D-Lys, D-Orn) and Aaa4 (Lys, Orn, Dab, Dap). The peptides were tested in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!